Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure of human transferrin receptor deduced from the mRNA sequence

Abstract

In vertebrates all iron is taken up via the carrier protein transferrin1. The carrier first binds its receptor and the receptor–ligand complex is then internalized via coated pits2–4. The transferrin receptor is a transmembrane glycoprotein (apparent molecular weight (MW) 180,000) composed of two disulphide-bonded sub-units (each of apparent MW 90,000)1,5,6. It contains three N-linked glycan units and is post-translationally modified with both phosphate and fatty acyl groups5,7. Here we have determined the nucleotide sequence of the coding region of the human transferrin receptor mRNA and from this deduced the amino acid sequence of the protein. The receptor does not contain an N-terminal signal peptide but there is a membrane-spanning segment 62 amino acids from the N-terminus. It therefore has a somewhat unusual configuration with a small N-terminal cytoplasmic domain and a C-terminal extracellular domain of 672 amino acids.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Newman, R., Schneider, C., Sutherland, R., Vodinelich, L. & Greaves, M. Trends biochem. Sci. 1, 397–400 (1982).

    Article  Google Scholar 

  2. Hopkins, C. R. & Trowbridge, I. S. J. Cell Biol. 97, 508–521 (1983).

    Article  CAS  Google Scholar 

  3. Dautry-Varsat, A., Ciechanover, A. & Lodish, H. F. Proc. natn. Acad. Sci. U.S.A. 80, 2258–2262 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Goldstein, J. L., Anderson, R. G. W. & Brown, M. S. Nature 279, 679–685 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Schneider, C., Sutherland, R., Newman, R. & Greaves, M. J. biol. Chem. 257, 8516–8522 (1982).

    CAS  PubMed  Google Scholar 

  6. Trowbridge, I. S. & Omary, M. B. Proc. natn. Acad. Sci. U.S.A. 78, 3039–3043 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Omary, M. B. & Trowbridge, I. S. J. biol. Chem. 256, 12888–12892 (1981).

    CAS  PubMed  Google Scholar 

  8. Schneider, C., Kurkinen, M. & Greaves, M. EMBO J. 2, 2259–2263 (1983).

    Article  CAS  Google Scholar 

  9. Kühn, L. C., McClelland, A. & Ruddle, F. H. Cell 37, 95–103 (1984).

    Article  Google Scholar 

  10. Schneider, C., Assen, U., Sutherland, R. & Greaves, M. F. FEBS Lett. 158, 259–264 (1983).

    Article  CAS  Google Scholar 

  11. Kozak, M. Nucleic Acids Res. 9, 5233–5252 (1981).

    Article  CAS  Google Scholar 

  12. Ullrich, A. et al. Nature 309, 418–425 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Lodish, H. F., Braell, W. A., Schwartz, A. L., Straus, G. J. A. M. & Zilberstein, A. Int. Rev. Cytol. 12, 247–307 (1981).

    CAS  Google Scholar 

  14. Drickamer, K. L. J. biol. Chem. 256, 5827–5839 (1981).

    CAS  PubMed  Google Scholar 

  15. Drickamer, K. L. J. biol. Chem. 253, 7242–7248 (1978).

    CAS  PubMed  Google Scholar 

  16. Singer, P. A. et al. EMBO J. 3, 873–877 (1984).

    Article  CAS  Google Scholar 

  17. Claesson, L., Larhammar, D., Rask, L. & Peterson, P. A. Proc. natn. Acad. Sci. U.S.A. 80, 7395–7399 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Kaufman, J. F., Krangel, M. S. & Strominger, J. L. J. biol. Chem. 259, 7230–7238 (1984).

    CAS  PubMed  Google Scholar 

  19. Blobel, G. Proc. natn. Acad. Sci. U.S.A. 77, 1496–1500 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Braell, W. A. & Lodish, H. F. J. biol. Chem. 257, 4578–4582 (1982).

    CAS  PubMed  Google Scholar 

  21. Gubler, U. & Hoffman, B. J. Gene 25, 263–269 (1983).

    Article  CAS  Google Scholar 

  22. Devine, J. M., Tsang, H. & Williams, J. G. Cell 28, 793–800 (1982).

    Article  CAS  Google Scholar 

  23. Messing, J. & Vieira, J. Gene 19, 269–276 (1982).

    Article  CAS  Google Scholar 

  24. Dente, L., Cesareni, G. & Cortese, R. Nucleic Acids Res. 11, 1645–1655 (1983).

    Article  CAS  Google Scholar 

  25. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  26. Wilbur, W. T. & Lipmann, D. Proc. natn. Acad. Sci. U.S.A. 800, 726–730 (1983).

    Article  ADS  Google Scholar 

  27. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Maxam, A. M. & Gilbert, W. Methods Enzymol. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, C., Owen, M., Banville, D. et al. Primary structure of human transferrin receptor deduced from the mRNA sequence. Nature 311, 675–678 (1984). https://doi.org/10.1038/311675b0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311675b0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing