Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrogen bonding and biological specificity analysed by protein engineering

Abstract

The role of complementary hydrogen bonding as a determinant of biological specificity has been examined by protein engineering of the tyrosyl-tRNA synthetase. Deletion of a side chain between enzyme and substrate to leave an unpaired, uncharged hydrogen-bond donor or acceptor weakens binding energy by only 0.5–1.5 kcal mol−1. But the presence of an unpaired and charged donor or acceptor weakens binding by a further 3 kcal mol−1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kauzmann, W. Adv. Protein Chem. 14, 1–63 (1959).

    Article  CAS  Google Scholar 

  2. Klotz, I. M. & Franzen, J. S. J. Am. chem. Soc. 84, 3461–3466 (1962).

    Article  CAS  Google Scholar 

  3. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry pt 1, 277 (Freeman, San Francisco, 1980).

    Google Scholar 

  4. Fersht, A. R. & Jakes, R. Biochemistry 14, 3350–3356 (1975).

    Article  CAS  Google Scholar 

  5. Wilkinson, A. J., Fersht, A. R., Blow, D. M. & Winter, G. Biochemistry 22, 3581–3586 (1983).

    Article  CAS  Google Scholar 

  6. Monteilhet, C. & Blow, D. M. J. molec. Biol. 22, 407–417 (1978).

    Article  Google Scholar 

  7. Rubin, J. & Blow, D. M. J. molec. Biol. 145, 489–500 (1981).

    Article  CAS  Google Scholar 

  8. Bhat, T. N., Blow, D. M., Brick, P. & Nyborg, J. J. molec. Biol. 158, 699–709 (1982).

    Article  CAS  Google Scholar 

  9. Blow, D. M. & Brick, P. in Biological Macromolecules and Assemblies Vol. 2 (eds Jurnak, F. & McPherson, A.) 442–469 (Wiley, New York, 1985).

    Google Scholar 

  10. Fersht, A. R. et al. Angew. Chem. 23, 467–473 (1984).

    Article  Google Scholar 

  11. Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M. & Smith, M. Nature 299, 756–758 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Wilkinson, A. J., Fersht, A. R., Blow, D. M., Carter, P. & Winter, G. Nature 307, 187–188 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Fersht, A. Enzyme Structure and Mechanism Ch. 2 (Freeman, New York, 1985).

    Google Scholar 

  14. Carter, P. J., Winter, G., Wilkinson, A. J. & Fersht, A. R. Cell 38, 835–840 (1984).

    Article  CAS  Google Scholar 

  15. Weiner, S. J. et al. J. Am. chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  16. Jencks, W. P. Catalysis in Chemistry and Enzymology (McGraw-Hill, New York, 1969).

    Google Scholar 

  17. Hine, J. J. Am. chem. Soc. 94, 5766–5771 (1972).

    Article  CAS  Google Scholar 

  18. Monteilhet, C., Blow, D. M. & Brick, P. J. molec. Biol. 173, 477–485 (1984).

    Article  CAS  Google Scholar 

  19. Fersht, A. R. & Dingwall, C. Biochemistry 18, 1245–1249 (1979).

    Article  CAS  Google Scholar 

  20. Fersht, A. R. Trends biochem. Sci. 9, 145–147 (1984).

    Article  Google Scholar 

  21. Fersht, A. R. & Dingwall, C. Biochemistry 18, 2627–2631 (1979).

    Article  CAS  Google Scholar 

  22. Waye, M. M. Y., Winter, G., Wilkinson, A. J. & Fersht, A. R. EMBO J. 2, 1827–1829 (1983).

    Article  CAS  Google Scholar 

  23. Fersht, A. R., Shindler, J. S. & Tsui, W.-C. Biochemistry 19, 5520–5524 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fersht, A., Shi, JP., Knill-Jones, J. et al. Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314, 235–238 (1985). https://doi.org/10.1038/314235a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/314235a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing