Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Removal of phosphorylation sites from the β2-adrenergic receptor delays onset of agonist-promoted desensitization

Abstract

Eukaryotic cells have evolved a variety of mechanisms for dampening their responsiveness to hormonal stimulation in the face of sustained activation. The mechanisms for such processes, collectively referred to as desensitization, often involve alterations in the properties and number of cell-surface hormone receptors1–3. It has been speculated that phosphorylation–dephosphorylation reactions, which are known to regulate the catalytic activities of enzymes, also regulate the function of receptors4. Highly specific receptor kinases, such as rhodopsin kinase5 and β-adrenergic receptor kinase6, which show stimulus-dependent phosphorylation of receptors have been described. Direct evidence for a causal relationship between receptor phosphorylation and desensitization has been lacking however. Here we report that prevention of agonist-stimulated β2-adrenergic receptor (β2AR) phosphorylation by truncation of its serine and threonine-rich phosphate acceptor segment delays the onset of desensitization. We also show that selective replacement of these serine and theronine residues by alanine and glycine delays desensitization even further. These data provide the first direct evidence that one molecular mechanism of desensitization of G-protein-coupled receptors involves their agonist-induced phosphorylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harden, T. K. Pharmac. Rev. 35, 5–23 (1983).

    CAS  Google Scholar 

  2. Clark, R. B. Adv. Cyclic Nucleotide Res. 20, 155–209 (1986).

    Google Scholar 

  3. Sibley, D. R. & Lefkowitz, R. J. Nature 317, 124–129 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Sibley, D. R., Benovic, J. L., Caron, M. G. & Lefkowitz, R. J. Cell 48, 913–922 (1987).

    Article  CAS  PubMed  Google Scholar 

  5. Kuhn, H. & Dreyer, W. J. FFBS Lett. 20, 1–6 (1972).

    Article  CAS  Google Scholar 

  6. Benovic, J. L., Strasser, R. H., Caron, M. G. & Lefkowitz, R. J. Proc. natn. Acad. Sci. U.S.A. 83, 2797–2801 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Dixon, R. A. F. et al. Nature 321, 75–79 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Dohlman, H. G., Bouvier, M., Benovic, J. L., Caron, M. G. & Lefkowitz, R. J. J. biol. Chem. 262, 14282–14288 (1987).

    CAS  PubMed  Google Scholar 

  9. Henderson, R. & Umwin, P. N. T. Nature 257, 28–32 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hargrave, P. A. et al. Neurochem. Int. 1, 231–244 (1980).

    Article  CAS  Google Scholar 

  11. Thompson, P. & Findlay, J. B. C. Biochem. J. 220, 773–780 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, J. L. & Dratz, E. A. Vision Res. 24, 1509–1521 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Bouvier, M. et al. Molec. Pharmac. 33, 133–139 (1988).

    CAS  Google Scholar 

  14. Homburger, V. et al. J. biol. Chem. 255, 10436–10444 (1980).

    CAS  PubMed  Google Scholar 

  15. Waldo, G. L., Northup, A. J. K., Perkins, J. P. & Harden, T. K. J. biol. Chem. 258, 13900–13908 (1983).

    CAS  PubMed  Google Scholar 

  16. Strader, C. D. et al. Cell 49, 855–863 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Benovic, J. L. et al. Proc. natn. Acad. Sci. U.S.A. 24, 8879–8882 (1987).

    Article  ADS  Google Scholar 

  18. Huganir, R. L., Delcour, A. H., Greengard, P. & Hess, G. P. Nature 321, 774–776 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Kobilka, B. K. et al. J. biol. Chem. 262, 7321–7327 (1987).

    CAS  PubMed  Google Scholar 

  20. Cullen, B. Meth. Enzym. 152, 684 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Gorman, C. in DNA cloning, A Practical Approach Vol. II. (ed. Glover, D. M.) 143–290 (IRL Press, Oxford, 1985).

    Google Scholar 

  22. Laemmli, U. K. Nature 227, 680–686 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Shorr, R. G. L., Lefkowitz, R. J. & Caron, M. G. J. biol. Chem. 256, 5820–5826 (1981).

    CAS  PubMed  Google Scholar 

  24. Salomon, Y., Londos, C. & Rodbell, M. Analyt. Biochem. 58, 541–548 (1974).

    Article  CAS  PubMed  Google Scholar 

  25. DeBlasi, A., Lipartiti, M., Motulsky, S., Insel, P. A. & Fratelli, M. J. clin. Endocr. Metab. 61, 1081–1088 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvier, M., Hausdorff, W., Blasi, A. et al. Removal of phosphorylation sites from the β2-adrenergic receptor delays onset of agonist-promoted desensitization. Nature 333, 370–373 (1988). https://doi.org/10.1038/333370a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333370a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing