Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

HIV-1 tat trans-activation requires the loop sequence within tar

Abstract

Human immunodeficiency virus (HIV-1) is the primary retroviral agent responsible for AIDS and related disorders worldwide. One of its identified gene products, tat protein, stimulates in trans the expression of all HIV-1 genes by several orders of magnitude1–7. Cells infected with HIV-1 require tat protein to produce virus, suggesting that trans-activation is crucial for viral replication8,9. The essential cis-acting site for trans-activation, termed tar, resides within the R region of the HIV-1 long terminal repeat (LTR), between −17 and +54 with respect to the initiation site of viral transcription10,11. It is striking that the RNA encoded between +1 and +59 has the potential to form an extensive stem-loop secondary structure which, as a portion of the untranslated leader RNA, would be common to all HIV-1 mRNAs 11,12. We now present the results of nucleotide substitution experiments which suggest that tat trans-activation requires presentation of the sequence +30CUGGG+34 in tar within the loop of a RNA hairpin structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sodroski, J. et al. Science 227, 171–173 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Arya, S. K., Guo, C., Josephs, S. F. & Wong-Staal, F. Science 229, 69–74 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Sodroski, J., Patarca, R., Rosen, C., Wong-Staal, F. & Haseltine, W. Science 229, 74–77 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Rosen, C. A. et al. Nature 319, 555–559 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Feinberg, M. B., Jarrett, R. F., Aldovini, A., Gallo, R. C. & Wong-Staal, F. Cell 46, 807–817 (1986).

    Article  CAS  Google Scholar 

  6. Cullen, B. R. Cell 46, 973–982 (1986).

    Article  CAS  Google Scholar 

  7. Peterlin, B. M., Luciw, P. A., Barr, P. J. & Walker, M. D. Proc. natn. Acad. Sci. U.S.A. 83, 9734–9738 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Fisher, A. G. et al. Nature 320, 367–371 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Dayton, A. I., Sodroski, J. G., Rosen, C. A., Goh, W. C. & Haseltine, W. Cell 44, 941–947 (1986).

    Article  CAS  Google Scholar 

  10. Rosen, C. A., Sodroski, J. G. & Haseltine, W. A. Cell 41, 813–823 (1985).

    Article  CAS  Google Scholar 

  11. Muesing, M. A., Smith, D. H. & Capon, D. J. Cell 48, 691–701 (1987).

    Article  CAS  Google Scholar 

  12. Okamoto, T. & Wong-Staal, F. Cell 47, 29–35 (1986).

    Article  CAS  Google Scholar 

  13. Guyader, M., Emerman, M., Sonigo, P., Clavel, F., Montagnier, L. & Alizon, M. Nature 326, 662–669 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Arya, S. K. et al. Nature 328, 548–550 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Emerman, M., Guyader, M., Montagnier, L., Baltimore, D. & Muesing, M. A. EMBO J. 6, 3755–3760 (1987).

    Article  CAS  Google Scholar 

  16. Cullen, B. R. Cell 46, 973–982 (1985).

    Article  Google Scholar 

  17. Hauber, J., Perkins, A., Heimer, E. P. & Cullen, B. R. Proc. natn. Acad. Sci. U.S.A 84, 6364–6368 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Kao, S. Y., Caiman, A. F., Luciw, P. A. & Peterlin, B. M. Nature 330, 489–493 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Rice, A. P. & Matthews, M. B. Nature 332, 551–553 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, S., Holland, E. HIV-1 tat trans-activation requires the loop sequence within tar. Nature 334, 165–167 (1988). https://doi.org/10.1038/334165a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334165a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing