Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II

Abstract

THE oscillation of membrane potential in mammalian central neurons is of interest because it relates to the role of oscillations in brain function. It has been proposed that the entorhinal cortex (EC), particularly the stellate cells of layer II (ECIIscs), plays an important part in the genesis of the theta rhythm1–3. These neurons occupy a key position in the neocortex-hippocampus-neocortex circuit, a crucial crossroad in memory functions4,5. Neuronal oscillations typically rely on the activation of voltage-dependent Ca2+ conductances and the Ca2+-dependent K+ conductance that usually follows6,7, as seen in other limbic subcortical structures generating theta rhymicity8–10. Here we report, however, that similar oscillations are generated in ECIIscs by a Na+ conductance. The finding of a subthreshold, voltage-gated, Na+-dependent rhythmic membrane oscillation in mammalian neurons indicates that rhythmicity in heterogeneous neuronal networks may be supported by different sets of intrinsic ionic mechanisms in each of the neuronal elements involved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Buzsaki, G., Leung, L.-W. & Vanderwolf, C. H. Brain Res. Rev. 6, 139–171 (1983).

    Article  Google Scholar 

  2. Holsheimer, J., Stok, C. J. & Lopes da Silva, F. H. Electorenceph. clin. Neurophysiol. 47, 464–467 (1983).

    Article  Google Scholar 

  3. Alonso, A. & Garciá-Austt, E. Expl Brain Res. 67, 502–509 (1987).

    Article  CAS  Google Scholar 

  4. Miskkin, M. Phil. Trans. R. Soc. 298, 85–95 (1982).

    Article  Google Scholar 

  5. Van Hoesen, G. W. Trends Neurosci. 5, 345–350 (1982).

    Article  Google Scholar 

  6. Llinás, R. R. Science 242, 1654–1664 (1988).

    Article  ADS  Google Scholar 

  7. Traub, R. D., Miles, R. & Wong, R. K. S. Science 243, 1319–1325 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Alonso, A. & Llinás, R. Soc. Neurosci. Abstr. 363, 3 (1988).

    Google Scholar 

  9. Alvarez de Toledo, G. & Lopez-Barneo, J. J. Physiol., Lond. 396, 399–415 (1988).

    Article  CAS  Google Scholar 

  10. Jahnsen, H. & Llinás, R. J. Physiol., Lond. 349, 227–247 (1984).

    Article  CAS  Google Scholar 

  11. Ramn y Cajal, S. Trab. Lab. Invest. biol. Univ. Madr. 1, 189–201 (1902).

    Google Scholar 

  12. Steward, O. & Scoville, S. A. J. comp. Neurol. 169, 347–370 (1976).

    Article  CAS  Google Scholar 

  13. Schwartz, S. P. & Coleman, P. D. Expl Neurol. 74, 305–312 (1981).

    Article  CAS  Google Scholar 

  14. Andersen, P., Holmqvist, B. & Voorhoeve, P. E. Acta Physiol. scand. 66, 448–460 (1966).

    Article  CAS  Google Scholar 

  15. Winson, J. & Abzug, C. J. Neurophysiol. 41, 716–732 (1979).

    Article  Google Scholar 

  16. Larson, J. & Lynch, G. Science 232, 985–988 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Greenstein, Y. J., Pavlides, C. & Winson, J. Brain Res. 438, 331–334 (1988).

    Article  CAS  Google Scholar 

  18. Bland, B. H. Prog. Neurobiol. 26, 1–54 (1986).

    Article  CAS  Google Scholar 

  19. Connors, B. W. & Prince, D. A. J. Pharmach. exp. Ther. 220, 476–481 (1982).

    CAS  Google Scholar 

  20. Stafstrom, C. E., Schwindt, P. C., Chubb, M. C. & Crill, W. E. J. Neurophysiol. 53, 153–170 (1985).

    Article  CAS  Google Scholar 

  21. Llinás, R. & Sugimori, M. J. Physiol., Lond. 305, 197–213 (1980).

    Article  Google Scholar 

  22. Connors, B. W., Gutnick, M. J. & Prince, D. J. Neurophysiol. 48, 1302–1320 (1982).

    Article  CAS  Google Scholar 

  23. French, C. R. & Gage, P. W. Neurosci Lett. 56, 289–293 (1985).

    Article  CAS  Google Scholar 

  24. Huguenard, J. R., Hamill, O. P. & Prince, D. A. J. Neurophysiol. 59, 778–795 (1988).

    Article  CAS  Google Scholar 

  25. Halliwell, J. V. & Adams, P. R. Brain Res. 250, 71–92 (1982).

    Article  CAS  Google Scholar 

  26. Spain, W. J., Schwindt, P. C. & Crill, W. E. J. Neurophysiol. 57, 1555–1576 (1987).

    Article  CAS  Google Scholar 

  27. Horikawa, K. & Armstrong, W. E. J. Neurosci. Meth. 25, 1–11 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso, A., Llinás, R. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342, 175–177 (1989). https://doi.org/10.1038/342175a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing