Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction

Abstract

The Spemann organizer in amphibian embryos is a tissue with potent head-inducing activity, the molecular nature of which is unresolved. Here we describe dickkopf-1 (dkk-1), which encodes Dkk-1, a secreted inducer of Spemann's organizer in Xenopus and a member of a new protein family. Injections of mRNA and antibody indicate that dkk-1 is sufficient and necessary to cause head induction. dkk-1 is a potent antagonist of Wnt signalling, suggesting that dkk genes encode a family of secreted Wnt inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dkk-1 is secreted and is a member of a new protein family.
Figure 2: Expression of dkk-1 in Xenopus and mouse.
Figure 3: Head induction by dkk-1.
Figure 4: Molecular markers induced by dkk-1.
Figure 5: dkk-1 inhibits Wnt signalling.
Figure 6: dkk-1 is required for head formation.

Similar content being viewed by others

References

  1. Sasai, Y. & De Robertis, E. M. Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Gerhart, J., Doniach, T. & Steward, R. in Gastrulation (eds Keller, R., Clark, W. H. & Griffin, F.) 57–77 (Plenum, New York, 1991).

    Book  Google Scholar 

  3. Lemaire, P. & Kodjabachian, L. The vertebrate organizer, structure and molecules. Trends Genet. 12, 525–531 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Bouwmeester, T., Kim, S.-H., Sasai, Y., Li, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Bally-cuif, L. & Boncinelli, E. Transcription factors and head formation in vertebrates. BioEssays 19, 127–135 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Glinka, A., Wu, W., Onichtchouk, D., Blumenstock, C. & Niehrs, C. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517–519 (1977).

    Article  ADS  Google Scholar 

  7. Nusse, R. & Varmus, H. E. Wnt genes. Cell 69, 1073–1087 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Parr, B. A. & McMahon, A. P. Wnt-genes and vertebrate development. Curr. Opin. Genet. Dev. 4, 523–528 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Moon, R. T., Brown, J. D. & Torres, M. Wnts modulate cell fate and behavior during vertebrate development. Trends Genet. 13, 157–162 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, S., Krinks, M., Lin, K., Luyten, F. P. & Moos, M. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Leyns, L., Bouwmeester, T., Kim, S.-H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of wnt-signals expressed in the Spemann organizer. Cell 88, 747–756 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glinka, A., Delius, H., Blumenstock, C. & Niehrs, C. Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium. Mech. Dev. 60, 221–231 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki, A.et al. Atruncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl Acad. Sci. USA 91, 10255–10259 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sasai, Y.et al. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779–790 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Devoto, S. H., Melancon, E., Eisen, J. S. & Westerfield, M. Identification of separate slow and fast muscle pioneer cells in vivo, prior to somite formation. Development 122, 3371–3380 (1996).

    CAS  PubMed  Google Scholar 

  16. Kao, K. R. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64–77 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Cho, K. W., Blumberg, B., Steinbeisser, H. & De Robertis, E. M. Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blitz, I. L. & Cho, K. W. Y. Anterior neuroectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121, 993–1004 (1995).

    CAS  PubMed  Google Scholar 

  19. Pannese, M.et al. The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121, 707–720 (1995).

    CAS  PubMed  Google Scholar 

  20. Gammil, L. S. & Sive, H. Identification of otx2 target genes and restrictions in ectodermal competence during cement gland formation. Development 124, 471–481 (1996).

    Google Scholar 

  21. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Fagotto, F., Guger, K. & Gumbiner, B. M. Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/beta-catenin signaling pathway, but not by Vg1, Activin or noggin. Development 124, 453–460 (1996).

    Google Scholar 

  23. Carnac, G., Kodjachbachian, L., Gurdon, J. B. & Lemaire, P. The homeobox gene siamois is a target of the wnt dorsalization pathway and triggers organiser activity in the absence of mesoderm. Development 122, 3055–3065 (1996).

    CAS  PubMed  Google Scholar 

  24. Itoh, K., Tang, T. L., Neel, B. G. & Sokol, S. Y. Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase. Development 121, 3979–3988 (1995).

    CAS  PubMed  Google Scholar 

  25. Smith, J. C., Price, B. M., Green, J. B., Weigel, D. & Herrmann, B. G. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Banville, D. & Williams, J. G. The pattern of expression of the Xenopus laevis tadpole alpha-globin genes and the amino acid sequence of the three major tadpole alpha-globin polypeptides. Nucleic Acids Res 13, 5407–5421 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeng, L.et al. The mouse fused locus encodes axin, an inhibitor of the Wnt-signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Sokol, S. Y., Klingensmith, J., Perrimon, N. & Itoh, K. Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled. Development 121, 1637–1647 (1995).

    CAS  PubMed  Google Scholar 

  29. Pierce, S. B. & Kimelman, D. Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3. Development 121, 755–765 (1995).

    CAS  PubMed  Google Scholar 

  30. He, X., Saint, J. J., Woodgett, J. R., Varmus, H. E. & Dawid, I. B. Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Karnovsky, A. & Klymkowsky, M. W. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc. Natl Acad. Sci. USA 92, 4522–4526 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith, W. C. & Harland, R. M. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, 753–765 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Christian, J. L. & Moon, R. T. Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev. 7, 13–28 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Cui, Y., Brown, J. D., Moon, R. T. & Christian, J. L. Xwnt-8b: a maternally expressed Xenopus Wnt gene with a potential role in establishing the dorsoventral axis. Development 121, 2177–2186 (1995).

    CAS  PubMed  Google Scholar 

  35. Bhanot, P.et al. Anew member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225–230 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Lecuit, T. & Cohen, S. M. Proximal–distal axis formation in the Drosophila leg. Nature 388, 139–145 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–274 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Gawantka, V., Delius, H., Hirschfeld, K., Blumenstock, C. & Niehrs, C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268–6279 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Monaghan, P. A., Grau, E., Bock, D. & Schütz, G. The mouse homolog of the orphan nuclear receptor tailless is expressed in the developing forebrain. Development 121, 839–853 (1995).

    CAS  PubMed  Google Scholar 

  40. Rupp, R. A., Snider, L. & Weintraub, H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J. B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87, 989–1000 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Hardy, S., Fiszman, M. Y., Osborne, H. B. & Thiebaud, P. Characterization of muscle and non muscle Xenopus laevis tropomyosin mRNAs transcribed from the same gene. Developmental and tissue-specific expression. Eur. J. Biochem. 202, 431–440 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Good, P. J., Richter, K. & Dawid, I. B. The sequence of a nervous system-specific, class II beta-tubulin gene from Xenopus laevis. Nucleic Acids Res. 17, 8000 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meier, V. S., Boehni, R. & Schuemperli, D. Nucleotide sequence of two mouse histone H4 genes. Nucleic Acids Res. 17, 795 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hemmati-Brivanlou, A. & Melton, D. A. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Harlow, E. & Lane, D. Antibodies. A Laboratory Manual (Cold Spring Harbor Laboratory Press, NY, 1988).

    Google Scholar 

Download references

Acknowledgements

We thank D. Bock, R. Dosch, V. Gawantka, R. Nitsch and N. Pollet for in situ hybridizations; P. Kioschis and N. Pollet for help with DNA sequence analysis; I. Schuster for histology; U.Hebling for assistance with sequencing work; S. Cohen for critically reading the manuscript; and B.Ferreiro, H. Herrmann, D. Kimelman, P. Lemaire, R. Moon, C. Otto, S. Sokol and M. Ueno for providing materials. This work was supported in part by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinka, A., Wu, W., Delius, H. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998). https://doi.org/10.1038/34848

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34848

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing