Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits

Abstract

Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of cholesteryl ester in high-density lipoprotein (HDL) for triglyceride in very low density lipoprotein (VLDL)1,2. This process decreases the level of anti-atherogenic HDL cholesterol and increases pro-atherogenic VLDL and low density lipoprotein (LDL) cholesterol, so CETP is potentially atherogenic3,4,5,6,7,8,9. On the other hand, CETP could also be anti-atherogenic10,11,12,13,14, because it participates in reverse cholesterol transport (transfer of cholesterol from peripheral cells through the plasma to the liver)15. Because the role of CETP in atherosclerosis remains unclear, we have attempted to develop a potent and specific CETP inhibitor. Here we describe CETP inhibitors that form a disulphide bond with CETP, and present one such inhibitor (JTT-705) that increases HDL cholesterol, decreases non-HDL cholesterol and inhibits the progression of atherosclerosis in rabbits. Our findings indicate that CETP may be atherogenic in vivo and that JTT-705 may be a potential anti-atherogenic drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of JTT-705 on the activity of wild-type and mutant CETP proteins.
Figure 2: Effect of JTT-705 on plasma CETP activity and HDL-C level in rabbits fed regular chow.
Figure 3: Cholesterol distribution in plasma lipoproteins from control, JTT-705-treated and simvastatin-treated rabbits at three months.
Figure 4: Typical photographs of aortas from control, JTT-705-treated and simvastatin-treated rabbits.

Similar content being viewed by others

References

  1. Tall, A. R. Plasma cholesterol ester transfer protein. J. Lipid. Res. 34, 1255–1274 (1993).

    CAS  PubMed  Google Scholar 

  2. Lagrost, L. Regulation of cholesteryl ester transfer protein (CETP) activity: review of in vitro and in vivo studies. Biochem. Biophys. Acta. 1215, 209–236 (1994).

    Article  Google Scholar 

  3. Brown, M. L. et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448–451 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Marotti, K. R. et al. Severe atherosclerosis in transgenic mice expressing simian cholesteryl ester transfer protein. Nature 364, 73–75 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Quinet, E., Tall, A. R., Ramakrishnan, R. & Rudel, L. Plasma lipid transfer protein as a determinant of the atherogenicity of monkey plasma lipoproteins. J. Clin. Invest. 87, 1559–1566 (1991).

    Article  CAS  Google Scholar 

  6. Bhatnagar, D. et al. Increased transfer of cholesteryl esters from high density lipoproteins to low density and very low density lipoproteins in patients with angiographic evidence of coronary artery disease. Atherosclerosis 98, 25–32 ( 1993).

    Article  CAS  Google Scholar 

  7. Foger, B., Luef, G. & Ritsch, A. Relationship of high-density lipoprotein subfractions and cholesteryl ester transfer protein in plasma to carotid artery wall thickness. J. Mol. Med. 73, 369–372 (1995).

    Article  CAS  Google Scholar 

  8. Sugano, M. et al. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits. J. Biol. Chem. 273, 5033– 5036 (1998).

    Article  CAS  Google Scholar 

  9. Herrera, V. L. et al. Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nature Med. 5, 1383–1389 (1999).

    Article  CAS  Google Scholar 

  10. Bruce, C., Chouinard, R. A. Jr & Tall, A. R. Plasma lipid transfer proteins, high-density lipoproteins, and reverse cholesterol transport. Annu. Rev. Nutr. 18, 297–330 (1998).

    Article  CAS  Google Scholar 

  11. Fielding, C. J. & Havel, R. J. Cholesteryl ester transfer proteins: friend or foe? J. Clin. Invest. 97, 2687–2688 (1996).

    Article  CAS  Google Scholar 

  12. Hayek, T., Masucci-Magoulas, L. & Jiang, X. Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl ester transfer protein transgene. J. Clin. Invest. 96, 2071–2074 (1995).

    Article  CAS  Google Scholar 

  13. Zhong, S. et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J. Clin. Invest. 97, 2917– 2923 (1996).

    Article  CAS  Google Scholar 

  14. Foger, B. et al. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. J. Biol. Chem. 274 , 36912–36920 (1999).

    Article  CAS  Google Scholar 

  15. Fielding, C. J. & Fielding, P. E. Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36, 211–228 (1995).

    CAS  PubMed  Google Scholar 

  16. Connolly, D. T., Heuvelman, D. & Glenn, K. Inactivation of cholesteryl ester transfer protein by cysteine modification. Biochem. Biophys. Res. Commun. 223, 42–47 (1996).

    Article  CAS  Google Scholar 

  17. Morton, R. E. & Zilversmit, D. B. Inter-relationship of lipid transferred by the lipid-transfer protein isolated from human lipoprotein-deficient plasma. J. Biol. Chem. 258, 11751– 11757 (1983).

    CAS  PubMed  Google Scholar 

  18. Frank, D. et al. Hypercholesterolemia in the rabbit induced by feeding graded amounts of low-level cholesterol: methodological considerations regarding individual variability in response to dietary cholesterol and development of lesion type. Artherioscler. Thromb. Vasc. Biol. 16, 1454–1464 (1996).

    Article  Google Scholar 

  19. Whitlock, M. E. et al. Monoclonal antibody inhibition of cholesteryl ester transfer protein activity in the rabbit. Effects on lipoprotein composition and high density lipoprotein cholesteryl ester metabolism. J. Clin. Invest. 84, 129–137 ( 1989).

    Article  CAS  Google Scholar 

  20. Inazu, A. et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N. Engl. J. Med. 323, 1234–1238 ( 1990).

    Article  CAS  Google Scholar 

  21. Wilson, P. W. F., Abbot, R. D. & Castelli, W. P. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis. 8, 737–741 (1988).

    Article  CAS  Google Scholar 

  22. Oram, J. F. & Yokoyama, S. Apoprotein-mediated removal of cellular cholesterol and phospholipids. J. Lipid. Res. 37, 2473–2491 (1996).

    CAS  PubMed  Google Scholar 

  23. Mackness, M. I. & Durrington, P. N. HDL, its enzymes and its potential to influence lipid peroxidation. Atherosclerosis. 115, 243–253 ( 1995).

    Article  CAS  Google Scholar 

  24. Suc, I., Escargueil-Blanc, I., Troy, M., Salvayre, R. & Negre-Salvayre, A. HDL and ApoA prevent cell death of endothelial cells induced by oxidized LDL. Arterioscler. Thromb. Vasc. Biol. 17, 2158–2166 (1997).

    Article  CAS  Google Scholar 

  25. Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl Acad. Sci. USA 82, 488– 492 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Tollefson, J. H. & Albers, J. J. Isolation, characterization, and assay of plasma lipid transfer protein. Methods Enzymol. 129, 797–816 (1986).

    Article  CAS  Google Scholar 

  27. Chiba, H. et al. Quantitative and compositional changes in high density lipoprotein subclasses in patients with various genotypes of cholesteryl ester transfer protein deficiency. J. Lipid Res. 38, 1204 –1216 (1997).

    CAS  PubMed  Google Scholar 

  28. Gerdes, L. U., Gerdes, C., Klausen, I. C. & Faergeman, O. Generation of analytic plasma lipoprotein profiles using two prepacked Superose 6B columns. Clin. Clim. Acta 205, 1– 9 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Iwamoto, M. Maki and T. Sotani for their assistance with the experiments, and A. Mizushima and M. Kamada for advice. We also thank H. Koizumi and the staff of the Toxicology Research Laboratories at the Central Pharmaceutical Research Institute of JT Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, H., Yonemori, F., Wakitani, K. et al. A cholesteryl ester transfer protein inhibitor attenuates atherosclerosis in rabbits. Nature 406, 203–207 (2000). https://doi.org/10.1038/35018119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing