Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a serpin–protease complex shows inhibition by deformation

Abstract

The serpins have evolved to be the predominant family of serine-protease inhibitors in man1,2. Their unique mechanism of inhibition involves a profound change in conformation3, although the nature and significance of this change has been controversial. Here we report the crystallographic structure of a typical serpin–protease complex and show the mechanism of inhibition. The conformational change is initiated by reaction of the active serine of the protease with the reactive centre of the serpin. This cleaves the reactive centre, which then moves 71 Å to the opposite pole of the serpin, taking the tethered protease with it. The tight linkage of the two molecules and resulting overlap of their structures does not affect the hyperstable serpin, but causes a surprising 37% loss of structure in the protease. This is induced by the plucking of the serine from its active site, together with breakage of interactions formed during zymogen activation4. The disruption of the catalytic site prevents the release of the protease from the complex, and the structural disorder allows its proteolytic destruction5,6. It is this ability of the conformational mechanism to crush as well as inhibit proteases that provides the serpins with their selective advantage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of the complex.
Figure 2: Proteolytic susceptibility of the complexed protease.
Figure 3: Disruption of active site.

Similar content being viewed by others

References

  1. Potempa, J., Korzus, E. & Travis, J. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J. Biol. Chem. 269, 15957–15960 (1994).

    CAS  PubMed  Google Scholar 

  2. Laskowski, M. & Qasim, M. A. What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim. Biophys. Acta 1477, 324–337 (2000).

    Article  CAS  Google Scholar 

  3. Loebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J. Mol. Biol. 177, 531– 557 (1984).

    Article  CAS  Google Scholar 

  4. Huber, R. & Bode, W. Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114–122 (1978).

    Article  CAS  Google Scholar 

  5. Kaslik, G., Patthy, A., Balint, M. & Graf, L. Trypsin complexed with alpha 1-proteinase inhibitor has an increased structural flexibility. FEBS Lett. 370, 179–183 (1995).

    Article  CAS  Google Scholar 

  6. Stavridi, E. S. et al. Structural change in alpha-chymotrypsin induced by complexation with alpha 1-antichymotrypsin as seen by enhanced sensitivity to proteolysis. Biochemistry 35, 10608– 10615 (1996).

    Article  CAS  Google Scholar 

  7. Huber, R. & Carrell, R. W. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 28, 8951–8966 (1989).

    Article  CAS  Google Scholar 

  8. Elliott, P. R., Abrahams, J. P. & Lomas, D. A. Wild-type alpha 1-antitrypsin is in the canonical inhibitory conformation. J. Mol. Biol. 275, 419–425 (1998).

    Article  CAS  Google Scholar 

  9. Wright, H. T. & Scarsdale, J. N. Structural basis for serpin inhibitor activity. Proteins 22, 210– 225 (1995).

    Article  CAS  Google Scholar 

  10. Stratikos, E. & Gettins, P. G. Formation of the covalent serpin–proteinase complex involves translocation of the proteinase by more than 70 A and full insertion of the reactive center loop into beta-sheet A. Proc. Natl Acad. Sci. USA 96, 4808–4813 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Fa, M. et al. The structure of a serpin-proteinase complex revealed by intramolecular distance measurements using donor-donor energy migration and mapping of interaction sites. Structure 8, 397– 405 (2000).

    Article  CAS  Google Scholar 

  12. Picard, V., Marque, P. E., Paolucci, F., Aiach, M. & Le Bonniec, B. F. Topology of the stable serpin–protease complexes revealed by an autoantibody that fails to react with the monomeric conformers of antithrombin. J. Biol. Chem. 274, 4586–4593 (1999).

    Article  CAS  Google Scholar 

  13. Carrell, R. W. & Owen, M. C. Plakalbumin, alpha 1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 317, 730–732 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Stein, P. E. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347, 99– 102 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Engh, R. A., Huber, R., Bode, W. & Schulze, A. J. Divining the serpin inhibition mechanism: a suicide substrate ‘spring’? Trends Biotechnol. 13, 503–510 (1995).

    Article  CAS  Google Scholar 

  16. Gooptu, B. et al. Inactive conformation of the serpin alpha(1)-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc. Natl Acad. Sci. USA 97, 67–72 ( 2000).

    Article  ADS  CAS  Google Scholar 

  17. Herve, M. & Ghelis, C. Conformational stability of the covalent complex between elastase and alpha 1-proteinase inhibitor. Arch. Biochem. Biophys. 285, 142–146 (1991).

    Article  CAS  Google Scholar 

  18. Olson, S. T. et al. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin–proteinase complexes. J. Biol. Chem. 270, 30007– 30017 (1995).

    Article  CAS  Google Scholar 

  19. Plotnick, M. I., Mayne, L., Schechter, N. M. & Rubin, H. Distortion of the active site of chymotrypsin complexed with a serpin. Biochemistry 35, 7586–7590 (1996).

    Article  CAS  Google Scholar 

  20. Gils, A. & Declerck, P. J. Structure-function relationships in serpins: current concepts and controversies. Thromb. Haemost. 80, 531–541 ( 1998).

    Article  CAS  Google Scholar 

  21. Harrop, S. J. et al. The crystal structure of plasminogen activator inhibitor 2 at 2. 0 Å resolution: implications for serpin function. Struct. Fold Des. 7, 43–54 (1999).

    Article  CAS  Google Scholar 

  22. Holmes, W. E. et al. Alpha 2-antiplasmin Enschede: alanine insertion and abolition of plasmin inhibitory activity. Science 238, 209–211 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Bode, W. & Huber, R. Structural basis of the endoproteinase-protein inhibitor interaction. Biochim. Biophys. Acta 1477, 241–252 (2000).

    Article  CAS  Google Scholar 

  24. Leslie, A. W. G. in Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography vol. 26 (Daresbury Laboratory, Warrington, 1992 ).

    Google Scholar 

  25. Evans, P. R. in Proceedings of the CCP4 Study Weekend. Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 114–122 (Daresbury Laboratory, 1993).

    Google Scholar 

  26. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystal- lography. Acta Crystallogr. 50, 760–763 (1994).

    Google Scholar 

  27. Navaza, J. AMORE - An automated package for molecular replacement. Acta Cryst. A 50, 157–163 ( 1994).

    Article  ADS  Google Scholar 

  28. Engh, R. et al. The S variant of human alpha 1-antitrypsin, structure and implications for function and metabolism. Protein Eng. 2, 407–415 (1989).

    Article  CAS  Google Scholar 

  29. Lee, S. L. New inhibitors of thrombin and other trypsin-like proteases: hydrogen bonding of an aromatic cyano group with a backbone amide of the P1 binding site replaces binding of a basic side chain. Biochemistry 36, 13180–13186 (1997).

    Article  CAS  Google Scholar 

  30. Colman, P. M., Fehlhammer, H. & Bartles, K. in Crystallographic Computing Techniques (eds Ahmed, F. R., Huml, K. & Sedlacek, B.) 248–258 (Munksgaard, Copenhagen, 1976).

    Google Scholar 

  31. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A 42, 140– 149 (1986).

    Article  Google Scholar 

  32. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Cryst. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  33. Pannu, N. S. & Read, R. J. Improved structure refinement through maximum likelihood. Acta Cryst. A 52, 659 –668 (1996).

    Article  Google Scholar 

  34. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  35. Esnouf, R. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  36. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues, N. Pannu for advice throughout; D. Lomas for reading the paper; A. Lesk and P. Stein for discussions; and K. Belzar for support. This work was supported by grants from the Wellcome Trust, the European Community and the National Institutes of Health (J.A.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Huntington.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntington, J., Read, R. & Carrell, R. Structure of a serpin–protease complex shows inhibition by deformation . Nature 407, 923–926 (2000). https://doi.org/10.1038/35038119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35038119

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing