Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice

An Erratum to this article was published on 01 April 2001

Abstract

Agonist-induced Ca2+ entry into cells by both store-operated channels and channels activated independently of Ca2+-store depletion has been described in various cell types. The molecular structures of these channels are unknown as is, in most cases, their impact on various cellular functions. Here we describe a store-operated Ca2+ current in vascular endothelium and show that endothelial cells of mice deficient in TRP4 (also known as CCE1) lack this current. As a consequence, agonist-induced Ca2+ entry and vasorelaxation is reduced markedly, showing that TRP4 is an indispensable component of store-operated channels in native endothelial cells and that these channels directly provide an Ca2+-entry pathway essentially contributing to the regulation of blood vessel tone.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of store-operated Ca2+ currents in MAEC.
Figure 3: Lack of store-operated Ca2+ currents in TRP4-deficient endothelial cells from mouse aorta (MAECs).
Figure 2: Targeted disruption of the mtrp4 gene.
Figure 4: Lack of store-operated Ca2+ entry (SOC) in TRP4-deficient MAECs.
Figure 5: Agonist-induced increase of [Ca2+]i is reduced markedly in TRP4-deficient endothelial cells.
Figure 6: Impaired agonist-induced vasorelaxation of TRP4-deficient aortic rings.

Similar content being viewed by others

References

  1. Berridge, M. J. Capacitative calcium entry. Biochem J. 312, 1–11 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Clapham, D. E. Calcium signaling. Cell 80, 259–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Putney, J. W Jr A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Lewis, R. S. & Cahalan, M. D. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol. 13, 623–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Parekh, A. B. & Penner, R. Store depletion and calcium influx. Physiol. Rev. 77, 901–930 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Fasolato, C., Innocenti, B. & Pozzan, T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends. Pharmacol. Sci. 15, 77–83 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Penner, R., Fasolato, C. & Hoth, M. Calcium influx and its control by calcium release. Curr. Opin. Neurobiol. 3, 368–374 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Krause, E., Pfeiffer, F., Schmid, A. & Schulz, I. Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells. J. Biol. Chem. 271, 32523–32528 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Somasundaram, B., Mason, M. J. & Mahaut, S. M. Thrombin-dependent calcium signalling in single human erythroleukaemia cells. J. Physiol. (Lond.) 501, 485–495 (1997).

    Article  CAS  Google Scholar 

  11. Mendelowitz, D., Bacal, K. & Kunze, D. L. Bradykinin-activated calcium influx pathway in bovine aortic endothelial cells. Am. J. Physiol. 262, H942–H948(1992).

    CAS  PubMed  Google Scholar 

  12. Lückhoff, A. & Clapham, D. E. Calcium channels activated by depletion of internal calcium stores in A431 cells. Biophys. J. 67, 177–182 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lantoine, F., Iouzalen, L., Devynck, M. A., Millanvoye-Van, B. E. & David, D. M. Nitric oxide production in human endothelial cells stimulated by histamine requires Ca2+ influx. Biochem. J. 330, 695–699 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iouzalen, L. et al. SK&F 96365 inhibits intracellular Ca2+ pumps and raises cytosolic Ca2+ concentration without production of nitric oxide and von Willebrand factor. Cell Calcium 20, 501–508 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Nilius, B., Viana, F. & Droogmans, G. Ion channels in vascular endothelium. Annu. Rev. Physiol 59, (1997).

  16. Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  17. Lantoine, F., Iouzalen, L., Devynck, M. A., Millanvoye-Van, B. E. & David, D. M. Nitric oxide production in human endothelial cells stimulated by histamine requires Ca2+ influx. Biochem J. 330, 695–699 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter, T. D. & Pearson, J. D. Regulation of prostacyclin synthesis in endothelial cells. News Physiol. Sci. 7, 64–69 (1992).

    CAS  Google Scholar 

  19. Oike, M., Gericke, M., Droogmans, G. & Nilius, B. Calcium entry activated by store depletion in human umbilical vein endothelial cells. Cell Calcium 16, 367–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Fasolato, C. & Nilius, B. Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflugers Arch. 436, 69–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Vaca, L. & Kunze, D. L. Depletion and refilling of intracellular Ca2+ stores induce oscillations of Ca2+ current. Am. J. Physiol. 264, H1319–H1322(1993).

    Article  CAS  PubMed  Google Scholar 

  22. Freichel, M. et al. Store-operated cation channels in the heart and cells of the cardiovascular system. Cell Physiol. Biochem. 9, 270–283 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Groschner, K. et al. Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett. 437, 101–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Kamouchi, M. et al. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J. Physiol. (Lond.) 518, 345–358 (1999).

    Article  CAS  Google Scholar 

  25. Kamouchi, M., Mamin, A., Droogmans, G. & Nilius, B. Nonselective cation channels in endothelial cells derived from human umbilical vein. J. Membr. Biol. 169, 29–38 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Vennekens, R. et al. Permeation and gating properties of the novel epithelial Ca2+ channel. J. Biol. Chem. 275, 3963–3969 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Philipp, S. et al. A mammalian capacitative calcium entry channel homologous to Drosophila TRP and TRPL. EMBO J. 15, 6166–6171 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Birnbaumer, L. et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins. Proc. Natl Acad. Sci. USA 93, 15195–15202 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Warnat, J., Philipp, S., Zimmer, S., Flockerzi, V. & Cavalie, A. Phenotype of a recombinant store-operated channel: highly selective permeation of Ca2+. J. Physiol. (Lond.) 518, 631–638 (1999).

    Article  CAS  Google Scholar 

  30. Tomita, Y. et al. Intracellular Ca2+ store-operated influx of Ca2+ through TRP-R, a rat homolog of TRP, expressed in Xenopus oocytes. Neurosci. Lett. 248, 195–198 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Philipp, S. et al. TRP4 (CCE1) protein is part of native calcium release-activated Ca2+-like channels in adrenal cells. J. Biol. Chem. 275, 23965–23972 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Schaefer, M., Plant, T. D., Obukhov, A. G., Hofmann, T., Gudermann, T. & Schultz, G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517–17526 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Freichel, M., Wissenbach, U., Philipp, S. & Flockerzi, V. Alternative splicing and tissue specific expression of the 5′ truncated bCCE 1 variant bCCE 1Δ514 . FEBS Lett. 422, 354–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Suh, S. H. et al. Characterisation of explanted endothelial cells from mouse aorta: electrophysiology and Ca2+ signalling. Pflugers Arch. 438, 612–620 (1999).

    CAS  PubMed  Google Scholar 

  35. Suh, S. H., Droogmans, G. & Nilius, B. Effects of cyanide and deoxyglucose on Ca2+ signalling in macrovascular endothelial cells. Endothelium 7, 155–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Madge, L., Marshall, I. C. & Taylor, C. W. Delayed autoregulation of the Ca2+ signals resulting from capacitative Ca2+ entry in bovine pulmonary artery endothelial cells. J. Physiol Lond. 498, 351–369 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu, X. et al. trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell 85, 661–671 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Boulay, G. et al. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J. Biol. Chem. 272, 29672–29680 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Kiselyov, K. et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 396, 478–482 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Pfeifer, A. et al. Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274, 2082–2086 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Nilius, B., Oike, M., Zahradnik, I. & Droogmans, G. Activation of a Cl current by hypotonic volume increase in human endothelial cells. J. Gen. Physiol 103, 787–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Suh, S. H. et al. Different mechanisms of K+ induced relaxation in various arteries. Korean J. Physiol. Pharmacol 3, 415–425 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Buchholz, G. Ulrich and J. Prenen for excellent technical support; F. Zimmermann for blastocyst injection and transfer; L. H. Philipson for providing mtrp4 cDNA; and R. Vennekens, M. Hoth and A. Cavalié for helpful discussion. This work was supported by the Deutsche Forschungsgemeinschaft (V.F.); the Belgian Federal Government, the Flemish Government and the Onderzoeksraad KU Leuven (B.N.); the Interuniversity Poles of Attraction Program, the Prime Ministers Office IUAP, “Levenslijn”, and the Fonds der Chemischen Industrie (V.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veit Flockerzi or Bernd Nilius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freichel, M., Suh, S., Pfeifer, A. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nat Cell Biol 3, 121–127 (2001). https://doi.org/10.1038/35055019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing