Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene-trap mutagenesis: past, present and beyond

Abstract

Although at least 35,000 human genes have been sequenced and mapped, adequate expression or functional information is available for only 15% of them. Gene-trap mutagenesis is a technique that randomly generates loss-of-function mutations and reports the expression of many mouse genes. At present, several large-scale, gene-trap screens are being carried out with various new vectors, which aim to generate a public resource of mutagenized embryonic stem (ES) cells. This resource now includes more than 8,000 mutagenized ES-cell lines, which are freely available, making it an appropriate time to evaluate the recent advances in this area of genomic technology and the technical hurdles it has yet to overcome.

Key Points

  • The thorough functional annotation of the mouse genome will require the use of a combination of mutagenesis strategies, including gene targeting, conditional mutagenesis, chromosomal engineering, high-throughput phenotypic screens of chemically mutagenized mice, and gene and promoter trapping.

  • Gene trapping is an insertional mutagenesis strategy used in embryonic stem (ES) cells that combines high-throughput random mutagenesis with molecularly defined mutations.

  • Gene-trap vectors contain a promoterless reporter gene. If the trap vector randomly integrates into an endogenous gene locus, a fusion transcript is generated from the upstream sequence of the endogenous trapped gene and the reporter. This fusion transcript can simultaneously report the expression of the trapped gene, mutate the gene and provide a sequence tag for cloning the mutated gene.

  • Gene trapping is a genetic tool that can be used to isolate mutations according to their resulting phenotype in vivo, to the sequence of the trapped locus and to its expression. However, some gene-trap strategies are limited to identifying only those trapped genes that are expressed in undifferentiated ES cells. To overcome this, and other limitations, new trapping vectors and strategies are being developed.

  • New trap vectors are continually being developed to increase trapping efficiency, to enhance the recovery of trapped sequence, to trap specific classes of protein, and/or to allow post-insertional modification of the trapped loci by combining trapping with conditional mutagenesis.

  • There are several international, large-scale gene-trap efforts now underway that will collectively generate tens of thousands of mutant ES cells that are, and will be, freely available to the scientific community.

  • Investigation of the mouse lines derived from these ES-cell libraries could eventually help scientists to dissect the function of thousands of mammalian genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The basic trap vectors.
Figure 2: A comparison of β-gal, β-geo and polyA gene-trap vectors.
Figure 3: The secretory-trap vector.
Figure 4: The plasmid rescue vector.

Similar content being viewed by others

References

  1. Bedell, M. A., Jenkins, N. A. & Copeland, N. G. Mouse models of human disease. I. Techniques and resources for genetic analysis of mice. Genes Dev. 11, 1–10 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Bedell, M. A., Largaespada, D. A., Jenkins, N. A. & Copeland, N. G. Mouse models fo human disease. II. Recent progress and future directions. Genes Dev. 11, 11–43 (1997).

    Article  PubMed  Google Scholar 

  3. Hustad, C. M. et al. Molecular genetic characterization of six recessive viable alleles of the mouse agouti locus. Genetics 140, 255–265 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Siracusa, L. D. et al. Hypervariable yellow (Ahvy), a new murine agouti mutation: Ahvy displays the largest variation in coat color phenotypes of all known agouti alleles. J. Hered. 86, 121–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Duhl, D. M., Vrieling, H., Miller, K. A., Wolff, G. L. & Barsh, G. S. Neomorphic agouti mutations in obese yellow mice. Nature Genet. 8, 59–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Silver, L. M. Mouse Genetics: Concepts and Applications (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  7. Russell, L. B. et al. Chlorambucil effectively induces deletion mutations in mouse germ cells. Proc. Natl Acad. Sci. USA 86, 3704–3708 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Russell, W. L. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl Acad. Sci. USA 76, 5818–5819 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Justice, M. J. Capitalizing on large-scale mouse mutagenesis screens. Nature Rev. Genet. 1, 109–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Jaenisch, R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc. Natl Acad. Sci. USA 73, 1260–1264 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spence, S. E., Gilbert, D. J., Swing, D. A., Copeland, N. G. & Jenkins, N. A. Spontaneous germ line virus infection and retroviral insertional mutagenesis in eighteen transgenic Srev lines of mice. Mol. Cell. Biol. 9, 177–184 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Jenkins, N. A. & Copeland, N. G. High frequency germline acquisition of ecotropic MuLV proviruses in SWR/J-RF/J hybrid mice. Cell 43, 811–819 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Costantini, F. & Lacy, E. Introduction of a rabbit β-globin gene into the mouse germ line. Nature 294, 92–94 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Gordon, J. W. & Ruddle, F. H. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214, 1244–1246 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Harbers, K., Jahner, D. & Jaenisch, R. Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal. Nature 293, 540–542 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Wagner, E. F., Stewart, T. A. & Mintz, B. The human β-globin gene and a functional viral thymidine kinase gene in developing mice. Proc. Natl Acad. Sci. USA 78, 5016–5020 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doetschman, T. et al. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576–578 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Thomas, K. R. & Capecchi, M. R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Lakso, M. et al. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6232–6236 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orban, P. C., Chui, D. & Marth, J. D. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl Acad. Sci. USA 89, 6861–6865 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dymecki, S. M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber, F., de Villiers, J. & Schaffner, W. An SV40 'enhancer trap' incorporates exogenous enhancers or generates enhancers from its own sequences. Cell 36, 983–992 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. O' Kane, C. J. & Gehring, W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl Acad. Sci. USA 84, 9123–9127 (1987).

    Article  CAS  Google Scholar 

  24. Allen, N. D. et al. Transgenes as probes for active chromosomal domains in mouse development. Nature 333, 852–855 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Kothary, R. et al. A transgene containing lacZ inserted into the dystonia locus is expressed in the neural tube. Nature 335, 435–437 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Gossler, A., Joyner, A. L., Rossant, J. & Skarnes, W. C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244, 463–465 (1989).The first example of enhancer-trap and gene-trap mutagenesis in mouse ES cells, and of ES-cell-derived mice. It was published the same year as the first targeted mutagenesis of non-selectable genes.

    Article  CAS  PubMed  Google Scholar 

  27. Korn, R. et al. Enhancer trap integrations in mouse embryonic stem cells give rise to staining patterns in chimaeric embryos with a high frequency and detect endogenous genes. Mech. Dev. 39, 95–109 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. von Melchner, H. & Ruley, H. E. Identification of cellular promoters by using a retrovirus promoter trap. J. Virol. 63, 3227–3233 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991). The development of the ROSA β-geo vectors and the first application of gene trapping to isolate lethal mutations.

    Article  CAS  PubMed  Google Scholar 

  30. Reddy, S., DeGregori, J. V., von Melchner, H. & Ruley, H. E. Retrovirus promoter-trap vector to induce lacZ gene fusions in mammalian cells. J. Virol. 19, 17–23 (1991).

    Google Scholar 

  31. von Melchner, H. et al. Selective disruption of genes expressed in totipotent embryonal stem cells. Genes Dev. 6, 919–927 (1992).This paper provided the foundation for the current promoter-trapping efforts.

    Article  CAS  PubMed  Google Scholar 

  32. Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single-gene specific oligonucleotide primer. Proc. Natl Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Skarnes, W. C., Auerbach, B. A. & Joyner, A. L. A gene trap approach in mouse embryonic stem cells: the lacZ reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Stanford, W. L. et al. Expression trapping: identification of novel genes expressed in hematopoietic and endothelial lineages by gene trapping in ES cells. Blood 92, 4622–4631 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. McClive, P. et al. Gene trap integrations expressed in the developing heart: insertion site affects splicing of the PT1-ATG vector. Dev. Dyn. 212, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Evans, M. J. Gene trapping — a preface. Dev. Dyn. 212, 167–169 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Niwa, H. et al. An efficient gene-trap method using poly A trap vectors and characterization of gene-trap events. J. Biochem. 113, 343–349 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Yoshida, M. et al. A new strategy of gene trapping in ES cells using 3′RACE. Trans. Res. 4, 277–287 (1995).

    Article  CAS  Google Scholar 

  39. Salminen, M., Meyer, B. I. & Gruss, P. Efficient Poly A trap approach allows the capture of genes specifically active in differentiated embryonic stem cells and in mouse embryos. Dev. Dyn. 212, 326–333 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hicks, G. G. et al. Functional genomics in mice by tagged sequence mutagenesis. Nature Genet. 16, 338–344 (1997).The first large-scale, genotype-driven gene-trap screen, which also introduces an elegant method of cloning trapped sequences. This project has also evolved into one of the gene-trap resource centres.

    Article  CAS  PubMed  Google Scholar 

  42. Skarnes, W. C., Moss, J. E., Hurtley, S. M. & Beddington, R. S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl Acad. Sci. USA 92, 6592–6596 (1995).An elegant method to trap a specific class of gene. This project has evolved into one of the gene-trap resource centres.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Araki, K. et al. Exchangeable gene trap using the Cre/mutated lox system. Cell. Mol. Biol. 45, 737–750 (1999).

    CAS  PubMed  Google Scholar 

  44. Hardouin, N. & Nagy, A. Gene-trap-based target site for Cre-mediated transgenic insertion. Genesis 26, 245–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Enver, T. & Greaves, M. Loops, lineage, and leukemia. Cell 94, 9–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Donoviel, D. B. et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol. Cell. Biol. 21, 4829–4836 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Breitman, M. L. et al. Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238, 1563–1565 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Westerman, K. A. & Leboulch, P. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc. Natl Acad. Sci. USA 93, 8971–8976 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mitchell, K. J. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genet. 28, 241–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Wurst, W. et al. A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139, 889–899 (1995).This work served as proof of principle for high-throughput gene-trap screens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoykova, A., Chowdhury, K., Bonaldo, P., Torres, M. & Gruss, P. Gene trap expression and mutational analysis for genes involved in the development of the mammalian nervous system. Dev. Dyn. 212, 198–213 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Leighton, P. A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  55. Wang, R., Clark, R. & Bautch, V. L. Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development. Development 114, 303–316 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J. C. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development 125, 725–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Schmitt, R. M., Bruyns, E. & Snodgrass, H. R. Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 5, 728–740 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Bautch, V. L. et al. Blood island formation in attached cultures of murine embryonic stem cells. Dev. Dyn. 205, 1–12 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Abe, K. et al. Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp. Cell Res. 229, 27–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A. & Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 97, 11307–11312 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weiss, M. J., Keller, G. & Orkin, S. H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 1184–1197 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Shalaby, F. et al. A requirement for Flk-1 in primitive and definitive hematopoiesis, and vasculogenesis. Cell 89, 981–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Narita, N., Bielinska, M. & Wilson, D. B. Cardiomyocyte differentiation by GATA-4-deficient embryonic stem cells. Development 122, 3755–3764 (1996).

    Article  Google Scholar 

  65. Joza, N. et al. Essential role of the mitochondrial apoptosis inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Muth, K., Bruyns, R., Thorey, I. S. & von Melchner, H. Disruption of genes regulated during hematopoietic differentiation of mouse embryonic stem cells. Dev. Dyn. 212, 277–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Hidaka, M. et al. Gene trapping of two novel genes, Hzf and Hhl, expressed in hematopoietic cells. Mech. Dev. 90, 3–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Baker, R. K. et al. In vitro preselection of gene-trapped embryonic stem cell clones for characterizing novel developmentally regulated genes in the mouse. Dev. Biol. 185, 201–214 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Shirai, M. et al. A gene trap strategy for identifying the gene expressed in the embryonic nervous system. Zool. Sci. 13, 277–283 (1996).

    Article  CAS  Google Scholar 

  70. Forrester, L. et al. Induction gene trapping in ES cells: identification of developmentally regulated genes that respond to retinoic acid. Proc. Natl Acad. Sci. USA 93, 1677–1682 (1996).The first high-throughput induction-trap screen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sam, M. et al. Aquarius, a novel gene isolated by gene trapping with an RNA-dependent polymerase motif. Dev. Dyn. 212, 304–317 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Gajovic, S., Chowdhury, K. & Gruss, P. Genes expressed after retinoic acid-mediated differentiation of embryoid bodies are likely to be expressed during embryo development. Exp. Cell Res. 242, 138–143 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Komada, M., McLean, D. J., Griswold, M. D., Russell, L. D. & Soriano, P. E-MAP-115, encoding a microtubule-associated protein, is a retinoic acid-inducible gene required for spermatogenesis. Genes Dev. 14, 1332–1342 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mainguy, G. et al. An induction gene trap for identifying a homeoprotein-regulated locus. Nature Biotechnol. 18, 746–749 (2000).A powerful use of gene trapping to isolate genes downstream of a transcription factor.

    Article  CAS  Google Scholar 

  75. Vallis, K. A., Chen, Z., Stanford, W. L., Hill, R. P. & Bernstein, A. Idenitification of ionizing radiation-responsive genes: a large-scale, induction gene trap strategy in embryonic stem cells. Radiat. Res. (in the press).

  76. Kerr, W. G., Heller, M. & Herzenberg, L. A. Analysis of lipopolysaccharide-response genes in B-lineage cells demonstrates that they can have differentiation stage-restricted expression and contain SH2 domains. Proc. Natl Acad. Sci. USA 93, 3947–3952 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Russ, A. P. et al. Identification of genes induced by factor deprivation in hematopoietic cells undergoing apoptosis using gene-trap mutagenesis and site-specific recombination. Proc. Natl Acad. Sci. USA 93, 15279–15284 (1996).This paper shows a use of gene trapping other than for mutagenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Andreu, T., Beckers, T., Thoenes, E., Hilgard, P. & von Melchner, H. Gene trapping identifies inhibitors of oncogenic transformation. The tissue inhibitor of metalloproteinases-3 (TIMP3) and collagen type I α2 (COL1A2) are epidermal growth factor-regulated growth repressors. J. Biol. Chem. 273, 13848–13854 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Akiyama, N., Matsuo, Y., Sai, H., Noda, M. & Kizaka-Kondoh, S. Identification of a series of transforming growth factor β-responsive genes by retrovirus-mediated gene trap screening. Mol. Cell. Biol. 20, 3266–3273 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vidal, F. et al. Gene trap analysis of germ cell signaling to Sertoli cells: NGF-TrkA mediated induction of Fra1 and Fos by post-meiotic germ cells. J. Cell. Sci. 114, 435–443 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Skarnes, W. C. Gene trapping methods for the identification and functional analysis of cell surface proteins. Methods Enzymol. 328, 592–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Townley, D. J., Avery, B. J., Rosen, B. & Skarnes, W. C. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res. 7, 293–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Nadeau, J. H. et al. Sequence interpretation. Functional annotation of mouse genome sequences. Science 291, 1251–1255 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J. & Skarnes, W. C. An LDL receptor-related protein mediates Wnt signaling in mice. Nature 407, 535–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Hildebrand, J. D. & Soriano, P. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99, 485–497 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Medico, E., Gambarotta, G., Gentile, A., Comoglio, P. M. & Soriano, P. A gene trap vector system for identifying transcriptionally responsive genes. Nature Biotechnol. 19, 579–582 (2001).

    Article  CAS  Google Scholar 

  87. Harrington, J. J. et al. Creation of genome-wide protein expression libraries using random activation of gene expression. Nature Biotechnol. 19, 440–445 (2001).

    Article  Google Scholar 

  88. Lefebvre, L., Dionne, N., Karaskova, J., Squire, J. & Nagy, A. Selection for transgene homozygosity in embryonic stem cells results in extensive loss of heterozygosity. Nature Genet. 27, 257–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Harbers, K., Kuehn, M., Delius, H. & Jaenisch, R. Insertion of retrovirus into the first intron of α1(I) collagen gene leads to embryonic lethal mutation in mice. Proc. Natl Acad. Sci. USA 81, 1504–1508 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Vijaya, S., Steffen, D. L. & Robinson, H. L. Acceptor sites for retroviral integrations map near DNaseI-hypersensitive sites in chromatin. J. Virol. 60, 683–692 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Soriano, P., Gridley, T. & Jaenisch, R. Retroviruses and insertional mutagenesis in mice: proviral integration at the Mov 34 locus leads to early embryonic death. Genes Dev. 1, 366–375 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Chowdhury, K., Bonaldo, P., Torres, M., Stoykova, A. & Gruss, P. Evidence for the stochastic integration of gene trap vectors into the mouse germline. Nucleic Acids Res. 25, 1531–1536 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hrabe de Angelis, M. H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Wiles, M. V. et al. Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nature Genet. 24, 13–14 (2000).This paper describes the first set of clones from the largest academic gene-trap library.

    Article  CAS  PubMed  Google Scholar 

  95. Bellen, H. J. et al. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3, 1288–1300 (1989).

    Article  CAS  PubMed  Google Scholar 

  96. Wilson, C. et al. P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev. 3, 1301–1313 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Bier, E. et al. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 3, 1273–1287 (1989).

    Article  CAS  PubMed  Google Scholar 

  98. Spradling, A. C. et al. The Berkeley Drosophila Genome Project Gene Disruption Project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Claes, B., Smalle, J., Dekeyser, R., Van Montagu, M. & Caplan, A. Organ-dependent regulation of a plant promoter isolated from rice by 'promoter-trapping' in tobacco. Plant J. 1, 15–26 (1991).

    Article  CAS  PubMed  Google Scholar 

  100. Meissner, R. et al. A high throughput system for transposon tagging and promoter trapping in tomato. Plant J. 22, 265–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish. Genes Dev. 13, 2713–2724 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Talbot, W. S. & Hopkins, N. Zebrafish mutations and functional analysis of the vertebrate genome. Genes Dev. 14, 755–762 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Zachgo, J. & Gossler, A. in Mammalian Development (ed. Lonai, P.) 321–337 (Harwood Academic Publishers, Amsterdam, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank the following investigators who have shared unpublished data and preprints to help make this review as current as possible: G. Hicks, E. Ruley, P. Soriano, W. C. Skarnes, J. Wrana, W. Wurst and K.-I. Yamamura. We thank the Canadian Institutes of Health Research and the Leukemia & Lymphoma Society for generous funding of gene-trap research to W.L.S. We apologize to the many colleagues who have provided valuable insights and large amounts of data in the gene-trap field whose manuscripts were not cited owing to strict space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Stanford.

Related links

Related links

DATABASE LINKS

MGI 

a

a 16H

a e

A hvy

A iy

A vy

Bmp2

Ext1

Lrp6

shroom

W

FURTHER INFORMATION

Alexandra Joyner's lab

Berkeley Drosophila Genome Project

Earl Ruley's lab

Harwell

Janet Rossant's lab

Lexicon Genetics 'OmniBank'

Nancy Hopkins' lab

Oakridge

Program in Developmental Biology and Fetal Health

The BayGenomics Gene Trap Project

The CMHD Gene Trap Project

The Gene Trap Project of the German Human Genome Project

The Jackson Laboratory

University of Manitoba Institute of Cell Biology

William Stanford's lab

Glossary

INTRACISTERNAL A PARTICLE

(IAP). Endogenous, non-infectious retroviral element that can undergo transposition and act as a mutagen.

ALLELIC SERIES

A collection of discrete mutations that affect the same gene.

SATURATION MUTAGENESIS

This occurs when a mutagenesis screen recovers at least one mutation in every gene.

INSERTIONAL MUTAGENESIS

A strategy that uses the insertion of DNA to mutagenize genes at the insertion site. The inserted sequence acts as a tag from which to clone the mutated gene.

PRONUCLEAR INJECTION

DNA injected into a one-cell mouse embryo before a single nucleus forms, when a male pronucleus and a female pronucleus are still present. DNA is usually injected into the more-visible male pronucleus to generate a transgenic embryo.

NEOMYCIN RESISTANCE GENE

The bacterial neomycin phosphotransferase gene provides resistance to the amino-glycoside analogue, G418.

INVERSE PCR

This technique allows the DNA that flanks a region of known sequence to be amplified. Cleavage products from restriction digests are circularized and then amplified by PCR using primers to the known sequence.

LONG TERMINAL REPEAT

(LTR). A sequence repeated at both ends of a retroviral DNA that is required for retroviral insertion into its target genomic DNA.

β-GALACTOSIDASE

This enzyme, encoded by lacZ, is a commonly used reporter, as it can act on various substrates to produce colour or fluorescent reactions to indicate the expression pattern of a gene.

β-GEO

A fusion protein encoded by the lacZ gene, which encodes the marker β-galactosidase, and the neo gene, which confers neomycin resistance.

SPLICE ACCEPTOR SITE

Sequences from exon–intron boundaries that mediate mRNA splicing.

5′RACE

(5′ rapid amplification of cDNA ends). RACE is a PCR-based method for amplifying unknown cDNA sequences by using primers that correspond to known sequence.

DIPHTHERIA TOXIN

A toxin secreted by the bacteria Corynebacterium diphtheriae. A cell lineage can be ablated using diphtheria toxin, by driving its cDNA from a lineage-specific promoter.

SV40 T ANTIGEN

A viral oncogene from the polyoma virus that can bind the tumour suppressors p53 and retinoblastoma, which blocks their functions and leads to the immortalization of the cell.

GENOTYPIC SCREEN

A genetic screen of mutants based solely on the sequence of the mutated gene.

EXPRESSION SCREEN

A genetic screen of mutants based solely on the expression pattern of the mutated gene.

ROSA

(Reverse orientation splice acceptor). In the ROSA series of gene-trap vectors, the long terminal repeat (LTR) is in the reverse orientation to the trapping vector to ensure that the LTR does not interfere with the endogenous expression pattern of the trapped gene.

AGGREGATION CHIMAERAS

A simple and inexpensive technique to generate mouse strains derived from embryonic stem (ES) cells, in which clumps of about eight ES cells are fused with eight-cell-stage embryos, developing into morphologically normal embryos that contain cells derived from both the ES cells and the donor embryo.

EXPRESSION-TRAPPING SCREEN

A gene-trap screen that identifies clones with trapped events in genes expressed in specific lineages.

BICISTRONIC

A bicistronic message allows two different proteins to be translated from the same mRNA strand, usually from a promoter and an internal ribosomal entry site.

INDUCTION TRAPPING

A gene-trap screen that identifies clones with trapped events in specific signalling pathways.

LIPOPOLYSACCHARIDE

Component of the outer membrane of Gram-negative bacteria. LPS is commonly used to elicit B-cell proliferation and differentiation.

ENHANCED GFP

(eGFP). An autofluorescent 27-kDa protein, originally identified in the jellyfish Aequorea victoria, that has been mutated to enhance fluorescence in mammalian cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanford, W., Cohn, J. & Cordes, S. Gene-trap mutagenesis: past, present and beyond. Nat Rev Genet 2, 756–768 (2001). https://doi.org/10.1038/35093548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35093548

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing