Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystalline ribonuclease A loses function below the dynamical transition at 220 K

Abstract

WHEN the dynamic properties of many different proteins are plotted as a function of temperature, biphasic behaviour is observed, with a broad transition centred around 220 K. Atomic mean-square displacements from X-ray crystallography1 and Mbssbauer scattering2–3 show this behaviour, as do electron transfer rates4 and dynamic information from inelastic neutron scattering5. Molecular dynamics simulations over a range of temperatures also exhibit a transition at about 220 K: high-temperature atomic fluctuations are dominated by anharmonic collective motions of bonded and nonbonded groups of atoms, but below 220 K the predominant dynamic behaviour is harmonic vibration of individual atoms6. Here we show by high-resolution X-ray diffraction that crystalline ribonuclease A does not bind substrate or inhibitor at 212 K but will bind either rapidly at 228 K. Once bound at the higher temperature, inhibitor cannot be washed off after the enzyme is cooled to below the transition temperature. These results suggest that enzyme flexibility is required for catalytic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tilton, R. F. Jr., Dewan, J. C. & Petsko, G. A. Biochemistry 31, 2469–2481 (1992).

    Article  CAS  Google Scholar 

  2. Parak, F. et al. FEBS Lett. 117, 368–372 (1980).

    Article  CAS  Google Scholar 

  3. Keller, H. & Debrunner, P. Phys. Rev. Lett. 45, 68–71 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Nocek, J. M. et al. J. Am. chem. Soc. 113, 6822–6831 (1991).

    Article  CAS  Google Scholar 

  5. Doster, W., Cusack, S. & Petry, W. Nature 337, 754–756 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Loncharich, R. J. & Brooks, B. R. J. molec. Biol. 215, 439–455 (1990).

    Article  CAS  Google Scholar 

  7. Richards, F. M. & Wyckoff, H. W. The Enzymes 3rd edn Vol. IV (ed. Boyer, P. D.) 647–806 (1971).

    Google Scholar 

  8. Howlin, B., Harris, G. W., Moss, D. S. & Palmer, R. A. J. molec. Biol. 196, 159–164 (1987).

    Article  CAS  Google Scholar 

  9. Petsko, G. A. Methods Enzym. 114, 141–146 (1985).

    Article  CAS  Google Scholar 

  10. Douzou, P. Cryobiochemistry (Academic, London, 1977).

    Google Scholar 

  11. Fink, A. L., Kar, D. & Kotin, R. Biochemistry, 26, 8571–8579 (1987).

    Article  CAS  Google Scholar 

  12. Rasmussen, B. F. & Petsko, G. A. J. appl. Crystallogr. (submitted).

  13. Gilbert, W. A., Lord, R. C., Petsko, G. A. & Thamann, T. J. J. Raman Spectrosc. 12, 173–179 (1982).

    Article  ADS  CAS  Google Scholar 

  14. Carlisle, C. H., Palmer, R. A., Mazumdar, S. K., Gorinsky, B. A. & Yeates, D. G. R. J. molec. Biol. 85, 1–18 (1974).

    Article  CAS  Google Scholar 

  15. Doster, W., Bachleitner, A., Dunau, R., Hiebl, M. & Lüscher, E. Biophys. J. 50, 213–219 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Steinbach, P. J. et al. Biochemistry 30, 3988–4001 (1991).

    Article  CAS  Google Scholar 

  17. Kartha, G., Ambady, G. & Viswamitra, M. A. Science 179, 495–496 (1973).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, B., Stock, A., Ringe, D. et al. Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357, 423–424 (1992). https://doi.org/10.1038/357423a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357423a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing