Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMDA-dependent superoxide production and neurotoxicity

Abstract

NEURONAL injury resulting from acute brain insults and some neurodegenerative diseases implicates N-methyl-D-aspartate (NMDA) glutamate receptors1–4. The fact that antioxidants reduce some types of brain damage suggests that oxygen radicals may have a role5–7. It has been shown that mutations in Cu/Zn-superoxide dismutase (SOD), an enzyme catalysing superoxide (O·-2) detoxification in the cell, are linked to a familial form of amyotrophic lateral sclerosis (ALS)4. Here we report that O·-2 is produced upon NMDA receptor stimulation in cultured cerebellar granule cells. Electron paramagnetic resonance was used to assess O·-2 production that was due in part to the release of arachidonic acid. Activation of kainic acid receptors, or voltage-sensitive Ca2+ channels, did not produce detectable O·-2. We also find that the nitrone DMPO (5,5-dimethyl pyrroline 1-oxide), used as a spin trap, is more efficient than the nitric oxide synthase inhibitor, L-NG-nitroarginine, in reducing NMDA-induced neuronal death in these cultures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Choi, D. W. Neuron 1, 623–634 (1988).

    Article  CAS  Google Scholar 

  2. Olney, J. W. Drug Dev. Res. 17, 299–319 (1989).

    Article  CAS  Google Scholar 

  3. Meldrum, B. S. & Garthwaite, J. Trends pharmac. Sci. 11, 379–387 (1990).

    Article  CAS  Google Scholar 

  4. Rosen, D. R. et al. Nature 362, 59–62 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Saez, J. C., Kessler, J. A., Bennett, M. V. L. & Spray, D. C. Proc. natn. Acad. Sci. U.S.A. 84, 3056–3059 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Monyer, H., Hartley, D. M. & Choi, D. W. Neuron 5, 121–126 (1990).

    Article  CAS  Google Scholar 

  7. Pellegrini-Giampietro, D. E., Cherici, G., Alesiani, M., Carla, V. & Moroni, F. J. Neurosci. 10, 1035–1041 (1990).

    Article  CAS  Google Scholar 

  8. Finkelstein, E., Rosen, G. M. & Rauckman, E. J. Arch. Biochem. Biophys. 200, 1–16 (1980).

    Article  CAS  Google Scholar 

  9. Dumuis, A., Sebben, M., Haynes, H., Pin, J.-P. & Bockaert, J. Nature 336, 68–70 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Rosen, G. M. & Finkelstein, E. Adv. free Rad. Biol. Med. 1, 345–375 (1985).

    Article  CAS  Google Scholar 

  11. Rosen, G. M. & Turner, M. J. III, J. med. Chem. 31, 428–432 (1988).

    Article  CAS  Google Scholar 

  12. Pou, S. et al. Analyt. Biochem. 177, 1–6 (1989).

    Article  CAS  Google Scholar 

  13. Didier, M., Heaulme, M., Gonalons, N., Soubrié, P. & Pin, J.-P. Eur. J. Pharmac. 224, 57–65 (1993).

    Article  Google Scholar 

  14. Mayer, M. L. & Miller, R. J. Trends Neurosci. 11, 254–260 (1990).

    CAS  Google Scholar 

  15. Traystman, R. J., Kirsch, J. R. & Koehler, R. C. J. appl. Physiol. 71, 1185–1195 (1991).

    Article  CAS  Google Scholar 

  16. Heinzel, B., John, M., Klatt, P., Böhme, E. & Mayer, B. Biochem. J. 281, 627–630 (1992).

    Article  CAS  Google Scholar 

  17. Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H. & Rosen, G. M. J. biol. Chem. 267, 24173–24176 (1992).

    CAS  PubMed  Google Scholar 

  18. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 88, 6368–6371 (1992).

    Article  ADS  Google Scholar 

  19. Lerner-Natoli, M., Rondouin, G., de Bock, F. & Bockaert, J. NeuroReport 3, 1109–1112 (1992).

    Article  CAS  Google Scholar 

  20. Nowicki, J. P., Duval, D., Poignet, H. & Scatton, B. Eur. J. Pharmac. 204, 339–340 (1992).

    Article  Google Scholar 

  21. Moncada, C., Lekieffre, D., Arvin, B. & Meldrum, B. NeuroReport 3, 530–532 (1992).

    Article  CAS  Google Scholar 

  22. Pauwels, P. J. & Leysen, J. E. Neurosci. Lett. 143, 27–30 (1992).

    Article  CAS  Google Scholar 

  23. Garthwaite, J. Trends Neurosci. 14, 60–67 (1991).

    Article  CAS  Google Scholar 

  24. Bredt, D. S. & Snyder, S. H. Neuron 8, 3–11 (1992).

    Article  CAS  Google Scholar 

  25. Van Vliet, B. J. et al. J. Neurochem. 52, 1229–1239 (1989).

    Article  CAS  Google Scholar 

  26. Didier, M., Heaulme, M., Soubrié, P., Bockaert, J. & Pin, J.-P. J. neurosci. Res. 27, 25–35 (1990).

    Article  CAS  Google Scholar 

  27. Lafon-Cazal, M., Bougault, I., Steinberg, R., Pin, J. P. & Bockaert, J. Brain Res. 593, 63–68 (1992).

    Article  CAS  Google Scholar 

  28. Favaron, M. et al. Proc. natn. Acad. Sci. U.S.A. 87, 1983–1987 (1989).

    Article  ADS  Google Scholar 

  29. Marin, P., Lafon-Cazal, M. & Bockaert, J. Eur. J. Neurosci. 4, 425–432 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafon-Cazal, M., Pietri, S., Culcasi, M. et al. NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537 (1993). https://doi.org/10.1038/364535a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364535a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing