Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans

Abstract

THE avermectins are a family of macrocyclic lactones used in the control of nematode and arthropod parasites1. Ivermectin (22,23-dihydroavermectin Bla) is widely used as an anthelmintic in veterinary medicine and is used to treat onchocerciasis or river blindness in humans1,2. Abamectin (avermectin B1a) is a miticide and insecticide used in crop protection1. Avermectins interact with vertebrate and invertebrate GABA receptors3–7 and invertebrate glutamate-gated chloride channels8–11. The soil nematode Caenorhabditis elegans has served as a useful model to study the mechanism of action of avermectins11–15. A C. elegans messenger RNA expressed in Xenopus oocytes encodes an avermectin-sensitive glutamate-gated chloride channel11,14. To elucidate the structure and properties of this channel, we used Xenopus oocytes for expression cloning of two functional complementary DNAs encoding an avermectin-sensitive glutamate-gated chloride channel. We find that the electrophysiological and structural properties of these proteins indicate that they are new members of the ligand-gated ion channel superfamily.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Campbell, W. C. Ivermectin and Abamectin (Springer, New York, 1989).

    Book  Google Scholar 

  2. Aziz, M. A., Diallo, S., Diop, I. M., Lariviere, M. & Porta, M. Lancet 2, 171–173 (1982).

    Article  CAS  Google Scholar 

  3. Fritz, L. C., Wang, C. C. & Gorio, A. Proc. natn. Acad. Sci. U.S.A. 76, 2062–2066 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Kass, I. S., Wang, C. C., Walrond, J. P. & Stretton, A. O. W. Proc. natn. Acad. Sci. U.S.A. 77, 6211–6215 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Pong, S.-S. & Wang, C. C. J. Neurochem. 38, 375–379 (1982).

    Article  CAS  Google Scholar 

  6. Mellin, T. N., Busch, R. D. & Wang, C. C. Neuropharmacology 22, 89–96 (1983).

    Article  CAS  Google Scholar 

  7. Sigel, E. & Baur, R. Molec. Pharmac. 32, 749–752 (1987).

    CAS  Google Scholar 

  8. Scott, R. H. & Duce, I. R. Pestic. Sci. 16, 599–604 (1985).

    Article  CAS  Google Scholar 

  9. Duce, I. R. & Scott, R. H. Brit. J. Pharmac. 85, 395–401 (1985).

    Article  CAS  Google Scholar 

  10. Zufall, F., Franke, C. & Hatt, H. J. exp. Biol. 142, 191–205 (1989).

    CAS  PubMed  Google Scholar 

  11. Arena, J. P., Liu, K. K., Paress, P. S., Schaeffer, J. M. & Cully, D. F. Molec. Brain Res. 15, 339–348 (1992).

    Article  CAS  Google Scholar 

  12. Schaeffer, J. M. & Haines, H. W. Biochem. Pharmac. 38, 2329–2338 (1989).

    Article  CAS  Google Scholar 

  13. Cully, D. F. & Paress, P. S. Molec. Pharmac. 40, 326–332 (1991).

    CAS  Google Scholar 

  14. Arena, J. P., Liu, K. K., Paress, P. S. & Cully, D. F. Molec. Pharmac. 40, 368–374 (1991).

    CAS  Google Scholar 

  15. Rohrer, S. P., Meinke, P. T., Hayes, E. C., Mrozik, H. & Schaeffer, J. M. Proc. natn. Acad. Sci. U.S.A. 89, 4168–4172 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Goldman, D. E. J. gen. Physiol. 27, 37–60 (1943).

    Article  CAS  Google Scholar 

  17. Hodgkin, A. L. & Katz, B. J. Physiol., Lond. 108, 37–77 (1949).

    Article  CAS  Google Scholar 

  18. Lea, T. J. & Usherwood, P. N. R. Comp. gen. Pharmac. 4, 351–363 (1973).

    Article  CAS  Google Scholar 

  19. Cull-Candy, S. G. J. Physiol. 255, 449–464 (1976).

    Article  CAS  Google Scholar 

  20. Arena, J. P. et al. J. Parasitol. (in the press).

  21. Dingledine, R., Myers, S. J. & Nicholas, R. A. FASEB J. 4, 2636–2645 (1990).

    Article  CAS  Google Scholar 

  22. Lea, T. J. & Usherwood, P. N. R. Comp. gen. Pharmac. 4, 333–350 (1973).

    Article  CAS  Google Scholar 

  23. Lingle, C. & Marder, E. Brain Res. 212, 481–488 (1981).

    Article  CAS  Google Scholar 

  24. Wafford, K. A. & Sattelle, D. B. J. exp. Biol. 144, 449–462 (1989).

    Google Scholar 

  25. Fraser, S. P. et al. Molec. Brain Res. 8, 331–341 (1990).

    Article  CAS  Google Scholar 

  26. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1982).

    Google Scholar 

  27. Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–170 (1982).

    Article  CAS  Google Scholar 

  28. Julius, D., MacDermott, A., Axel, R. & Jessel, T. Science 241, 558–564 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cully, D., Vassilatis, D., Liu, K. et al. Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371, 707–711 (1994). https://doi.org/10.1038/371707a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371707a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing