Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor

Abstract

THE peptide angiotensin II is the effector molecule of the renin-angiotensin system. All the haemodynamic effects of angiotensin II, including vasoconstriction and adrenal aldosterone release, are mediated through a single class of cell-surface receptors known as AT1 (refs 1, 2). These receptors contain the structural features of the G-protein-coupled receptor superfamily3. We show here that angiotensin II induces the rapid phosphorylation of tyrosine in the intracellular kinases Jak2 and Tyk2 in rat aortic smooth-muscle cells and that this phosphorylation is associated with increased activity of Jak2. The Jak family substrates STAT1 and STAT2 (for signal transducers and activators of transcription) are rapidly tyrosine-phosphorylated in response to angiotensin II. We also find that Jak2 co-precipitates with the AT1, receptor, indicating that G-protein-coupled receptors may be able to signal through the intracellular phosphorylation pathways used by cytokine receptors4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Peach, M. J. Physiol. Rev. 57, 313–337 (1977).

    Article  CAS  Google Scholar 

  2. Peach, M. J. Biochem. Pharmac. 30, 2745–2751 (1981).

    Article  CAS  Google Scholar 

  3. Murphy, T. J., Alexander, R. W., Griendling, K. K., Runge, M. S. & Bernstein, K. E. Nature 351, 233–236 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Watling, D. et al. Nature 366, 166–170 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Silvennoinen, O., Ihle, J. N., Schlessinger, J. & Levy, D. E. Nature 366, 583–585 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Shuai, K. et al. Nature 366, 580–583 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Velazquez, L., Fellous, M., Stark, G. R. & Pellegrini, S. Cell 70, 313–322 (1992).

    Article  CAS  Google Scholar 

  8. Rui, H., Kirken, R. & Farrar, W. L. J. biol. Chem. 269, 5364–5368 (1994).

    CAS  PubMed  Google Scholar 

  9. Bhat, G. J., Thekkumkara, T. J., Thomas, W. G., Conrad, K. M. & Baker, K. M. J. biol. Chem. 269, 31443–31449 (1994).

    CAS  Google Scholar 

  10. Cohen, P. Nature 296, 613–617 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Pazin, M. J. & Williams, L. T. Trends biochem Sci. 17, 374–378 (1992).

    Article  CAS  Google Scholar 

  12. Fantl, W. & Williams, L. T. A. Rev. Biochem. 62, 453–481 (1993).

    Article  CAS  Google Scholar 

  13. Schlessinger, J. & Ullrich, A. Neuron 9, 383–391 (1992).

    Article  CAS  Google Scholar 

  14. Cadena, D. L. & Gill, G. N. FASEB J. 6, 2332–2337 (1992).

    Article  CAS  Google Scholar 

  15. Silvennoinen, O. et al. Proc. natn. Acad. Sci. U.S.A. 90, 8429–8433 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Miura, O. et al. Blood 84, 1501–1507 (1994).

    CAS  Google Scholar 

  17. Keegan, A. D. et al. Cell 76, 811–820 (1994).

    Article  CAS  Google Scholar 

  18. Savarese, T. M. & Fraser, C. M. Biochem. J. 283, 1–19 (1992).

    Article  CAS  Google Scholar 

  19. Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. A. Rev. Biochem. 60, 651–688 (1992).

    Google Scholar 

  20. Marrero, M. B., Paxton, W. G., Duff, J. L., Berk, B. C. & Bernstein, K. E. J. biol. Chem. 269, 10935–10939 (1994).

    CAS  Google Scholar 

  21. Schorb, W., Peeler, T. C., Madigan, N. M., Conrad, K. M. & Baker, K. M. J. biol. Chem. 269, 19626–19632 (1994).

    CAS  PubMed  Google Scholar 

  22. Geisterfer, A. A. T., Peach, M. J. & Owens, G. K. Circ. Res. 62, 749–756 (1988).

    Article  CAS  Google Scholar 

  23. Naftilan, A. J., Pratt, R. E. & Dzau, V. J. J. clin. Invest. 83, 1419–1424 (1989).

    Article  CAS  Google Scholar 

  24. Darnell, J. E. Jr, Kerr, I. A. & Stark, G. R. Science 264, 1415–1421 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Ihle, J. N. et al. Trends biochem. Sci. 19, 222–227 (1994).

    Article  CAS  Google Scholar 

  26. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  27. Timmermans, P. B., Wong, P. C., Chiu, A. T. & Herblin, W. F. Trends pharmac. Sci 12, 55–62 (1991).

    Article  CAS  Google Scholar 

  28. Dignam, J. D., Lebovitz, R. M. & Roeder, R. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrero, M., Schieffer, B., Paxton, W. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995). https://doi.org/10.1038/375247a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375247a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing