Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland

Abstract

FORMATION of the pineal gland hormone melatonin increases markedly at night in response to light–dark environmental alterations1–5. Melatonin is synthesized from serotonin by an initial N-acetylation followed by methylation of the 5-hydroxy moiety by hydroxyindole-O-methyltransferase6,7. Serotonin N-acetyltransferase (NAT; EC2. 3.1.87), which catalyses the first reaction, is the rate-limiting enzyme in this process, and its activity increases dramatically with the onset of darkness. Because melatonin may play important biological roles in reproduction1,2,8, ageing1,2,9 and sleep1,2,9, understanding the molecular factors that regulate NAT is of particular importance. To identify proteins that regulate light–dark variations in pineal function, we used a subtractive hybridization technique based on the polymerase chain reaction (PCR) to isolate rat pineal gland messages that are differentially expressed by day and night. Here we report the molecular cloning of NAT and dramatic diurnal variations in its transcription. Independently, Klein and associates have cloned NAT from sheep pineal glands10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Binkley, S. The Pineal: Endocrine and Nonendocrine Function (Prentice Hall, Englewood Cliffs, NJ, 1988).

    Google Scholar 

  2. Melatonin and the Pineal Gland. From Basic Science to Clinical Application (Excerpta Medica, Amsterdam, 1993).

  3. Tamarkin, L., Baird, C. J. & Almeida, O. F. X. Science 227, 714–720 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Reiter, R. J. Trends Endocr. Metab. 1, 13–19 (1991).

    Article  Google Scholar 

  5. Klein, D. C., Schaad, N. L., Namboordiri, M. A. A., Yu, L. & Weller, J. L. Biochem. Soc. Trans. 20, 299–304 (1992).

    Article  CAS  Google Scholar 

  6. Weissbach, H., Redfield, B. G. & Axelrod, J. Biochim. biophys. Acta 43, 352–353 (1960).

    Article  CAS  Google Scholar 

  7. Axelrod, J. & Weissbach, H. Science 131, 1312 (1960).

    Article  ADS  CAS  Google Scholar 

  8. Hoffman, R. & Reiter, R. Science 148, 1609–1611 (1966).

    Article  ADS  Google Scholar 

  9. Hagan, R. M. & Oakley, N. R. Trends pharmacol. Sci. 16, 81–83 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Coon, S. L. et al. Science (in the press).

  11. Wang, Z. & Brown, D. D. Proc. natn. Acad. Sci. U.S.A. 88, 11505–11509 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Underwood, H., Binkley, S., Siopes, T. & Mosher, K. Gen. comp. Endocr. 56, 70–81 (1984).

    Article  CAS  Google Scholar 

  13. Voisin, P., Namboodiri, M. A. A. & Klein, D. C. J. biol. Chem. 259, 10913–10918 (1984).

    CAS  PubMed  Google Scholar 

  14. Wolfe, M. S., Lee, N. R. & Satz, M. Brain Res. 669, 100–106 (1995).

    Article  CAS  Google Scholar 

  15. Brownstein, M. & Axelrod, J. Science 184, 163–165 (1974).

    Article  ADS  CAS  Google Scholar 

  16. Craft, C. M., Morgan, W. W. & Reiter, R. J. Neuroendocr. 38, 193–198 (1984).

    Article  CAS  Google Scholar 

  17. Klein, D. C., Berg, G. R. & Weller, J. L. Science 168, 979–980 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Stehle, J. H. et al. Nature 365, 314–320 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Takahashi, J. S. Curr. Biol. 4, 165–168 (1994).

    Article  CAS  Google Scholar 

  20. Molina, C. A., Foulkes, N. S., Lalli, E. & Sassone-Corsi, P. Cell 75, 875–886 (1993).

    Article  CAS  Google Scholar 

  21. Sassone-Corsi, P. Cell 78, 361–364 (1994).

    Article  CAS  Google Scholar 

  22. Sambrook, J., Maniatis, T. & Fritsch, E. F. Molecular Cloning. A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  23. Steinlechner, S., Champney, T. H., Houston, M. L. & Reiter, R. J. Proc. Soc. exp. Biol. Med. 175, 93–97 (1984).

    Article  CAS  Google Scholar 

  24. Hardie, D. G. Protein Phosphorylation. A Practical Approach (Oxford Univ. Press, New York, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borjigin, J., Wang, M. & Snyder, S. Diurnal variation in mRNA encoding serotonin N-acetyltransferase in pineal gland. Nature 378, 783–785 (1995). https://doi.org/10.1038/378783a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/378783a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing