Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid-precursor protein

Abstract

THE Alzheimer's β-amyloid precursor protein (β-APP) is widely expressed in neural cells, and in neurons secreted forms of β-APP (sAPPs) are released from membrane-spanning holo-βAPP in an activity-dependent manner1,2. Secreted APPs can modulate neur-ite outgrowth, synaptogenesis, synaptic plasticity and cell survival3–9; a signal transduction mechanism of sAPPs may involve modulation of intracellular calcium levels ([Ca2+]i)4,10. Here we use whole-cell perforated patch and single-channel patch-clamp analysis of hippocampal neurons to demonstrate that sAPPs suppress action potentials and hyperpolarize neurons by activating high-conductance, charybdotoxin-sensitive K+ channels. Activation of K+ channels by sAPPs was mimicked by a cyclic GMP analogue and sodium nitroprusside and blocked by an antagonist of cGMP-dependent kinase and a phosphatase inhibitor, suggesting that the effect is mediated by cGMP and protein dephosphorylation. Calcium imaging studies indicate that activation of K+ channels mediates the ability of sAPPs to decrease [Ca2+]i. Modulation of neuronal excitability may be a major mechanism by which β-APP regulates developmental and synaptic plasticity in the nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Selkoe, D. J. Trends Neurosci. 16, 403–409 (1993).

    Article  CAS  Google Scholar 

  2. Nitsch, R. M., Farber, S. A., Growdon, J. H. & Wurtman, Proc. natn. Acad. Sci. U.S.A. 90, 5191–5193 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Mattson, M. P. et al. Trends Neurosci. 16, 409–415 (1993).

    Article  CAS  Google Scholar 

  4. Mattson, M. P. et al. Neuron 10, 243–254 (1993).

    Article  CAS  Google Scholar 

  5. Mattson, M. P. J. Neurobiol. 25, 439–450 (1994).

    Article  CAS  Google Scholar 

  6. Roch, J. M. et al. Proc. natn. Acad. Sci. U.S.A. 91, 7450–7454 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Huber, S., Martin, J. R., Loffler, J. & Moreau, J.-L. Brain Res. 603, 348–352 (1993).

    Article  CAS  Google Scholar 

  8. Luo, L., Tully, T. & White, K. Neuron 9, 595–605 (1992).

    Article  CAS  Google Scholar 

  9. Mucke, L. et al. Brain Res. 666, 151–167 (1994).

    Article  CAS  Google Scholar 

  10. Barger, S. W., Fiscus, R. R., Ruth, P., Hofmann, F. & Mattson, M. P. J. Neurochem. 64, 2087–2096 (1995).

    Article  CAS  Google Scholar 

  11. Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Proc. natn. Acad. Sci. U.S.A. 92, 8074–8077 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. & Salkoff, L. Science 261, 221–224 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Pongs, O. Trends pharmac. Sci. 13, 359–365 (1992).

    Article  CAS  Google Scholar 

  14. Wann, K. T. & Richards, C. D. Eur. J. Neurosci. 6, 607–617 (1994).

    Article  CAS  Google Scholar 

  15. Firestein, S. & Zufall, F. Semin. Cell Biol. 5, 39–46 (1994).

    Article  CAS  Google Scholar 

  16. Sperelakis, N., Tohse, N., Ohya, Y. & Masuda, H. Adv. Pharmac. 26, 217–252 (1994).

    Article  CAS  Google Scholar 

  17. White, R. E. et al. Nature 361, 263–266 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Archer, S. L. et al. Proc. natn. Acad. Sci. U.S.A. 91, 7583–7587 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Butt, E. et al. FEBS Lett. 263, 47–50 (1990).

    Article  CAS  Google Scholar 

  20. Barger, S. W. & Mattson, M. P. Biochem. J. 311, 45–47 (1995).

    Article  CAS  Google Scholar 

  21. Critz, D. & Byrne, J. H. J. Neurophysiol. 68, 1079–1086 (1992).

    Article  CAS  Google Scholar 

  22. Egan, T. M., Dagan, D. & Levitan, I. B. J. Neurophysiol. 69, 1433–1442 (1993).

    Article  CAS  Google Scholar 

  23. Kater, S. B., Mattson, M. P., Cohan, C. S. & Connor, J. A. Trends Neurosci. 11, 315–321 (1988).

    Article  CAS  Google Scholar 

  24. Haydon, P. G. & Drapeau, P. Trends Neurosci. 18, 196–201 (1995).

    Article  CAS  Google Scholar 

  25. Alkon, D. L. et al. Brain Res. Rev. 16, 193–220 (1991).

    Article  CAS  Google Scholar 

  26. Etcheberrigaray, R. et al. Proc. natn. Acad. Sci. U.S.A. 90, 8209–8213 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Mark, R. J., Hensley, K., Butterfield, D. A. & Mattson, M. P. J. Neurosci. 15, 6239–6249 (1995).

    Article  CAS  Google Scholar 

  28. Mattson, M. P., Barger, S. W., Begley, J. G. & Mark, R. J. Meth. Cell Biol. 46, 187–216 (1995).

    Article  CAS  Google Scholar 

  29. Wakamori, M., Hidaka, H. & Akaike, N. J. Pnysiol. 463, 585–604 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, K., Barger, S., Blalock, E. et al. Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid-precursor protein. Nature 379, 74–78 (1996). https://doi.org/10.1038/379074a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379074a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing