Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of non-vesicular glutamate release by pH

Abstract

GLUTAMATE uptake into glial cells helps to keep the brain extracellular glutamate concentration, [glu]0, below levels that kill neurons. Uptake is powered1–4 by the transmembrane gradients of Na+, K+ and pH. When the extracellular [K+] rises in brain ischaemia, uptake reverses, releasing glutamate into the extracellular space5,6. Here we show, by monitoring glutamate transport electrically and detecting released glutamate with ion channels in neurons placed outside glial cells, that a raised [H+] inhibits both forward and reversed glutamate uptake. No electroneutral reversed uptake was detected, contradicting the idea7 that forward and reversed uptake differ fundamentally. Suppression of reversed uptake by the low pH occurring in ischaemia8,9 will slow the Ca2+-independent release of glutamate10 which can raise [glu]0 to a neurotoxic level 11,12, and will thus protect the brain during a transient loss of blood supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kanner, B. I. & Sharon, I. Biochemistry 17, 3949–3953 (1978).

    Article  CAS  Google Scholar 

  2. Bouvier, M., Szatkowski, M., Amato, A. & Attwell, D. Nature 360, 471–474 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Erecinska, M., Wantorsky, D. & Wilson, D. F. J. biol. Chem. 258, 9069–9077 (1983).

    CAS  PubMed  Google Scholar 

  4. Nelson, P. J., Dean, G. E., Aronson, P. S. & Rudnick, G. Biochemistry 22, 5459–5463 (1983).

    Article  CAS  Google Scholar 

  5. Szatkowski, M., Barbour, B. & Attwell, D. Nature 348, 443–446 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Madl, J. E. & Burgesser, K. J. Neurosci. 13, 4429–4444 (1993).

    Article  CAS  Google Scholar 

  7. Schwartz, E. A. & Tachibana, M. J. Physiol., Lond. 426, 43–80 (1990).

    Article  CAS  Google Scholar 

  8. Silver, I. A. & Erecinska, M. J. Cereb. Blood Flow Metab. 12, 759–772 (1992).

    Article  CAS  Google Scholar 

  9. Mutch, W. A. C. & Hansen, A. J. J. Cereb. Blood Flow Metab. 4, 17–27 (1984).

    Article  CAS  Google Scholar 

  10. Ikeda, M., Nakawaza, T., Abe, K., Kaneko, T. & Yamatsu, K. Neurosci. Lett. 96, 202–206 (1989).

    Article  CAS  Google Scholar 

  11. Szatkowski, M. & Attwell, D. Trends Neurosci. 17, 359–365 (1994).

    Article  CAS  Google Scholar 

  12. Choi, D. W. & Rothman, S. M. A. Rev. Neurosci. 13, 171–182 (1990).

    Article  CAS  Google Scholar 

  13. Brew, H. & Attwell, D. Nature 327, 707–709 (1987).

    Article  ADS  CAS  Google Scholar 

  14. Kanai, Y. et al. J. biol. Chem. 270, 16561–16568 (1995).

    Article  CAS  Google Scholar 

  15. Storck, T., Schulte, S., Hofmann, K. & Stoffel, W. Proc. natn. Acad. Sci. U.S.A. 89, 10955–10959 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Pines, G. et al. Nature 360, 464–467 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Kanai, Y. & Hediger, M. A. Nature 360, 467–471 (1992).

    Article  ADS  CAS  Google Scholar 

  18. Attwell, D. & Mobbs, P. Curr. Opin. Neurobiol. 4, 353–359 (1994).

    Article  CAS  Google Scholar 

  19. Schwartz, E. A. Neuron 10, 1141–1149 (1993).

    Article  CAS  Google Scholar 

  20. Barbour, B., Brew, H. & Attwell, D. J. Physiol., Lond. 436, 169–193 (1991).

    Article  CAS  Google Scholar 

  21. Sarantis, M., Everett, K. & Attwell, D. Nature 332, 451–453 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Eliasof, S. & Werblin, F. S. J. Neurosci. 13, 402–411 (1993).

    Article  CAS  Google Scholar 

  23. Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P. & Amara, S. G. Nature 375, 599–603 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Attwell, D., Barbour, B. & Szatkowski, M. Neuron 11, 401–407 (1993).

    Article  CAS  Google Scholar 

  25. Yamada, K. A. & Tang, C.-M. J. Neurosci. 13, 3904–3915 (1993).

    Article  CAS  Google Scholar 

  26. Nadeau, S. E. J. Fam. Pract. 38, 495–504 (1994).

    CAS  PubMed  Google Scholar 

  27. Lord, R. S. Aust. N. Z. J. Ophthal. 18, 299–305 (1990).

    Article  CAS  Google Scholar 

  28. Traynelis, S. F. & Cull-Candy, S. G. Nature 345, 347–350 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Mobbs, P., Brew, H. & Attwell, D. Brain Res. 460, 235–245 (1988).

    Article  CAS  Google Scholar 

  30. Newman, E. A. & Odette, L. L. J. Neurophysiol. 51, 164–182 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Billups, B., Attwell, D. Modulation of non-vesicular glutamate release by pH. Nature 379, 171–174 (1996). https://doi.org/10.1038/379171a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/379171a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing