Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RGS10 is a selective activator of Gαi GTPase activity

Abstract

POLYPEPTIDES that define a protein family termed RGS (for regulators of G-protein signalling) are encoded by the SST2 gene of the yeast Saccharomyces cerevisiae, the EGL-10 gene of the nematode Caenorhabdatis elegans, and several related mammalian genes. Genetic studies in invertebrates and mammalian cell-transfection experiments indicate that RGS proteins negatively regulate signalling pathways involving seven transmem-brane receptors and heterotrimeric G proteins1–3. However, the biochemical mechanism by which RGS proteins control these pathways is unknown. Here we report the characterization of human RGS10, a member of this protein family. Co-immunopre-cipitation studies demonstrate that RGS10 associates specifically with the activated forms of two related G-protein subunits, Gαi3 and Gα z, but fails to interact with the structurally and functionally distinct Gα s subunit. In vitro assays with purified proteins indicate that RGS10 increases potently and selectively the GTP hydrolytic activity of several members of the Gα i family, including Gα i3, Gα z and Gα o. These results demonstrate that RGS proteins can attenuate signalling pathways involving heterotrimeric G proteins by serving as GTPase-activating proteins for specific types of Gα subunits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dohlman, H., Apaniesk, D., Chen, Y., Song, J. & Nusskern, D. Mol. Cell Biol. 15, 3635–3643 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koelle, M. R. & Horvitz, H. R. Cell 84, 115–125 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Druey, K. M., Blumer, K. J., Kang, V. H. & Kehrl, J. H. Nature 379, 742–746 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wong, Y. H. et al. Nature 351, 63–65 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Bogaski, M. S. & McCormick, F. Nature 366, 643–645 (1993).

    Article  ADS  Google Scholar 

  6. Camps, M. et al. Nature 360, 684–686 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Katz, A., Wu, D. & Simon, M. I. Nature 360, 686–689 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Crespo, P., Xu, N., Simonds, W. F. & Gutkind, J. S. Nature 369, 418–420 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. van-Biesen, T. et al. Nature 376, 781–784 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Kunkel, M. T. & Peralta, E. G. Cell 83, 443–449 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Arshavsky, V. & Bownds, M. D. Nature 357, 416–417 (1992).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Berstein, G. et al. Cell 70, 411–418 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Ausubel, F. et al. in Current Protocols in Molecular Biology (ed. Jansenn, K.) 1314 (Wiley, New York, 1995).

    Google Scholar 

  14. Gyuris, J., Golemis, E. A., Chertkov, H. & Brent, R. Cell 75, 791–803 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. Nucleic Acids Res. 20, 1425 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kunkel, T., Roberts, J. & Zakour, R. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Fields, T. A. & Casey, P. J. J. Biol. Chem. 270, 23119–23125 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Linder, M. E., Ewald, E., Miller, R. J. & Gilman, A. G. J. Biol. Chem. 265, 8243–8251.

  19. Sternweis, P. C. & Robishaw, J. D. J. Biol. Chem. 259, 13806–13813 (1984).

    CAS  PubMed  Google Scholar 

  20. Graziano, M. P., Freissmuth, M. & Gilman, A. G. J. Biol. Chem. 264, 409–418 (1989).

    CAS  PubMed  Google Scholar 

  21. Higashijima, T., Ferguson, K. M., Smigel, M. D. & Gilman, A. G. J. Biol. Chem. 262, 757–761 (1987).

    CAS  PubMed  Google Scholar 

  22. Hong, J. X., Wilson, G. L., Fox, C. H. & Kehrl, J. H. J. Immunol. 150, 3895–3904 (1993).

    CAS  PubMed  Google Scholar 

  23. De-Vries, L., Mousli, M., Wurmser, A. & Farquhar, M. G. Proc. Natl Acad. Sci. USA 92, 11916–11920 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, T., Fields, T., Casey, P. et al. RGS10 is a selective activator of Gαi GTPase activity. Nature 383, 175–177 (1996). https://doi.org/10.1038/383175a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/383175a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing