Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors

Abstract

GABA (γ-amino-butyric acid), the principal inhibitory neurotransmitter in the brain, signals through ionotropic (GABAA/GABAC) and metabotropic (GABAB) receptor systems. Here we report the cloning of GABAB receptors. Photoaffinity labelling experiments suggest that the cloned receptors correspond to two highly conserved GABAB receptor forms present in the vertebrate nervous system. The cloned receptors negatively couple to adenylyl cyclase and show sequence similarity to the metabotropic receptors for the excitatory neurotransmitter L-glutamate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bowery, N. G. GABAB receptor pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109–147 (1993).

    Article  CAS  Google Scholar 

  2. Seeburg, P. H. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365 (1993).

    Article  CAS  Google Scholar 

  3. Bittiger, H., Froestl, W., Mickel, S. J. & Olpe, H. R. GABAB receptor antagonists: from synthesis to therapeutic applications. Trends Pharmacol Sci. 14, 391–394 (1993).

    Article  CAS  Google Scholar 

  4. Kerr, D. I. & Ong, J. GABAB receptors: targets for drug development. Drug Discovery Today 1, 371–380 (1996).

    Article  CAS  Google Scholar 

  5. Smith, G. B. & Olsen, R. W. Functional domains of GABAA receptors. Trends Neurosci. 16, 162–168 (1995).

    CAS  Google Scholar 

  6. Misgeld, U., Bijak, M. & Jarolimek, W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog. Neurobiol. 46, 423–462 (1995).

    Article  CAS  Google Scholar 

  7. Nakanishi, S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13, 1031–1037 (1994).

    Article  CAS  Google Scholar 

  8. Pin, J.-P. & Duvoisin, R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1–26 (1995).

    Article  CAS  Google Scholar 

  9. Strader, C. D., Fong, T. M., Graziano, M. P. & Tota, M. R. The family of G-protein-coupled receptors. FASEB J. 9, 745–754 (1995).

    Article  CAS  Google Scholar 

  10. Hill, D. R. & Bowery, N. G. 3H-Baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290, 149–152 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Dutar, P. & Nicoll, R. A. A physiological role for GABAB receptors in the central nervous system. Nature 332, 156–158 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Bonanno, G. & Raiteri, M. Functional evidence for multiple GABAB receptor subtypes in the rat cerebral cortex. J. Pharmacol. Exp. Ther. 262, 114–118 (1992).

    CAS  PubMed  Google Scholar 

  13. Bonanno, G. & Raiteri, M. Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261 (1993).

    Article  CAS  Google Scholar 

  14. Cunningham, M. D. & Enna, S. J. Evidence for pharmacologically distinct GABAB receptors associated with cAMP production in rat brain. Brain Res. 720, 220–224 (1996).

    Article  CAS  Google Scholar 

  15. De Erausquin, G., Brooker, G., Costa, E. & Wojcik, W. J. Stimulation of high affinity GABABreceptors potentiates the depolarization-induced increase of intraneuronal ionized calcium content in cerebellar granule neurons. Mol. Pharmacol. 42, 407–414 (1992).

    CAS  PubMed  Google Scholar 

  16. Lanza, M., Fassio, A., Gemignani, A., Bonanno, G. & Raiteri, M. CGP52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur. J. Pharmacol. 237, 191–195 (1993).

    Article  CAS  Google Scholar 

  17. Davies, C. H., Starkey, S. J., Pozza, M. F. & Collingridge, G. L. GABAB autoreceptors regulate the induction of LTP. Nature 349, 609–611 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Olpe, H.-R., Woerner, W. & Ferrat, T. Stimulation parameters determine role of GABAB receptors in long-term potentiation. Experientia 49, 542–546 (1993).

    Article  CAS  Google Scholar 

  19. Nakayasu, H., Nishikawa, M., Mizutani, H., Kimura, H. & Kuriyama, K. Immunoaffinity purification and characterization of GABAB receptors from bovine cerebral cortex. J. Biol. Chem. 268, 8658–8664 (1993).

    CAS  PubMed  Google Scholar 

  20. Hill, D. R., Bowery, N. G. & Hudson, A. L. Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem. 42, 652–657 (1984).

    Article  CAS  Google Scholar 

  21. Bormann, J. & Feigenspan, A. GABAc receptors. Trends Neurosci. 18, 515–519 (1995).

    Article  CAS  Google Scholar 

  22. Zuiderwijk, M., Veenstra, E., Lopes Da Silva, F. H. & Ghijsen, W. E. J. M. Effects of uptake carrier blockers SK & F89976-A and L- trans-PDC on in vivo release of amino acids in rat hippocampus. Eur. J. Pharmacol. 307, 275–282 (1996).

    Article  CAS  Google Scholar 

  23. Kerr, D. I. & Ong, J. GABAB receptors. Pharmacol. Ther. 67, 187–246 (1995).

    Article  CAS  Google Scholar 

  24. Froestl, W., Mickel, S. J., Schmutz, M. & Bittiger, H. Potent, orally active GABAB receptor antagonists. Pharmacol. Rev. Commun. 8, 127–133 (1996).

    CAS  Google Scholar 

  25. Turgeon, S. M. & Albin, R. L. Postnatal ontogeny of GABAB binding in rat brain. Neuroscience 62, 601–613 (1994).

    Article  CAS  Google Scholar 

  26. von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14, 4683–4690 (1986).

    Article  CAS  Google Scholar 

  27. Devereux, J., Haeberli, P. & Smithies, O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  28. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  29. Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. USA 85, 2444–2448 (1988).

    Article  ADS  CAS  Google Scholar 

  30. Brown, E. M. et al. Cloning and characterization of an extracellular Ca2+ -sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    Article  ADS  CAS  Google Scholar 

  31. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  32. Chinkers, M. et al. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 78–83 (1989).

    Article  ADS  CAS  Google Scholar 

  33. Auchampach, J. A., Oliver, M. G., Anderson, D. C. & Manning, A. M. Cloning, sequence comparison and in vivo expression of the gene encoding rat P-selectin. Gene 145, 251–255 (1994).

    Article  CAS  Google Scholar 

  34. Hourcade, D., Miesner, D. R., Atkinson, J. P. & Holers, V. M. Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1. J. Exp. Med. 168, 1255–1270 (1988).

    Article  CAS  Google Scholar 

  35. Landick, R. & Oxender, D. L. The complete nucleotide sequences of the Escherichia coli LIV-BP and LS-BP genes. Implications for the mechanism of high-affinity branched-chain amino acid transport. J. Biol. Chem. 260, 8257–8261 (1985).

    CAS  PubMed  Google Scholar 

  36. Ohnishi, K., Nakazima, A., Matsubara, K. & Kiritani, K. Cloning and nucleotide sequences of livB and livC, the structural genes encoding binding proteins of the high-affinity branched-chain amino acid transport in Salmonella typhimurium. J. Biochem. (Tokyo) 107, 202–208 (1990).

    Article  CAS  Google Scholar 

  37. O'Hara, P. J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1993).

    Article  CAS  Google Scholar 

  38. Gomeza, J. et al. The second intracellular loop of metabotropic glutamate receptor 1 cooperates with the other intracellular domains to control coupling to G-proteins. J. Biol. Chem. 271, 2199–2205 (1996).

    Article  CAS  Google Scholar 

  39. Chu, D. C., Albin, R. L., Young, A. B. & Penney, J. B. Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34, 341–357 (1990).

    Article  CAS  Google Scholar 

  40. Bowery, N. G. & Pratt, G. D. GABAB receptors as targets for drug action. Arzneim. Forsch. Drug Res. 42, 215–223 (1992).

    CAS  Google Scholar 

  41. Wojcik, W. J. & Neff, N. H. GABAB receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol Pharmacol. 25, 24–28 (1984).

    CAS  PubMed  Google Scholar 

  42. Froestl, W. et al. Phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists. J. Med. Chem. 38, 3297–3312 (1995).

    Article  CAS  Google Scholar 

  43. Stuart, G. J. & Redman, S. J. The role of GABAA and GABAB receptors in presynaptic inhibition of a la EPSPs in cat spinal motoneurones. J. Physiol. 447, 675–692 (1992).

    Article  CAS  Google Scholar 

  44. Gemignani, A., Paudice, P., Bonanno, G. & Raiteri, M. Pharmacological discrimination between GABAB receptors regulating cholecystokinin and somatostatin release from rat neocortex synapto-somes. Mol. Pharmacol. 46, 558–562 (1994).

    CAS  PubMed  Google Scholar 

  45. Knight, A. R. & Bowery, N. G. The pharmacology of adenylyl cyclase modulation by GABAB receptors in rat brain slices. Neuropharmacology 35, 703–712 (1996).

    Article  CAS  Google Scholar 

  46. Wojcik, W. J., Travagli, R. A., Costa, E. & Bertolino, M. Baclofen inhibits with high affinity an L-type-like voltage-dependent calcium channel in cerebellar granule cell cultures. Neuropharmacology 29, 969–972 (1990).

    Article  CAS  Google Scholar 

  47. Law, S. F., Yasuda, K., Bell, G. I. & Reisine, T. Giα3 and Goα selectively associate with the cloned somatostatin receptor subtype SSTR2. J. Biol. Chem. 268, 10721–10727 (1993).

    CAS  PubMed  Google Scholar 

  48. Kenakin, T. The classification of seven transmembrane receptors in recombinant expression systems. Pharmacol. Rev. 48, 413–463 (1996).

    CAS  PubMed  Google Scholar 

  49. Karbon, E. W. & Enna, S. J. Characterization of the relationship between GABAB agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53–59 (1985).

    CAS  PubMed  Google Scholar 

  50. Bischoff, S., Barhanin, B., Bettler, B., Mulle, C. & Heinemann, S. F. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J. Comp. Neurol. (in the press).

  51. Olpe, H.-R. et al. CGP35348: a centrally active blocker of GABAB receptors. Eur. J. Pharmacol. 187, 27–38 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaupmann, K., Huggel, K., Heid, J. et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246 (1997). https://doi.org/10.1038/386239a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386239a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing