Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct ATP receptors on pain-sensing and stretch-sensing neurons

Abstract

The initial pain from tissue damage may result from the release of cytoplasmic components that act upon nociceptors, the sensors for pain. ATP was proposed to fill this role1,2 because it elicits pain when applied intradermally3 and may be the active compound in cytoplasmic fractions that cause pain4. Moreover, ATP opens ligand-gated ion channels (P2X receptors) in sensory neurons5,6,7 and only sensory neurons express messenger RNA for the P2X3 receptor8,9. To test whether ATP contributes to nociception, we developed a tissue culture system that allows comparison of nociceptive (tooth-pulp afferent) and non-nociceptive (muscle-stretch receptor) rat sensory neurons. Low concentrations of ATP evoked action potentials and large inward currents in both types of neuron. Nociceptors had currents that were similar to those of heterologously expressed channels containing P2X3 subunits, and had P2X3 immunoreactivity in their sensory endings and cell bodies. Stretch receptors had currents that differed from those of P2X3 channels, and had no P2X3 immunoreactivity. These results support the theory that P2X3 receptors mediate a form of nociception, but also suggest non-nociceptive roles for ATP in sensory neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burnstock, G. A unifying purinergic hypothesis for the initiation of pain. Lancet 347, 1604–1605 (1996).

    Article  CAS  Google Scholar 

  2. Kennedy, C. & Leff, P. Painful connection for ATP. Nature 377, 285–386 (1995).

    Article  Google Scholar 

  3. Bleehen, T. & Keele, C. A. Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3, 367–377 (1977).

    Article  CAS  Google Scholar 

  4. Bleehen, T., Hobbiger, F. & Keele, C. A. Identification of algogenic substances in human erythrocytes. J. Physiol. 262, 131–149 (1976).

    Article  CAS  Google Scholar 

  5. Jahr, C. E. & Jessel, T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature 304, 730–733 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Krishtal, O. A., Marchenko, S. M. & Obukhov, A. G. Cationic channels activated by extracellular ATP in rat sensory neurons. Neuroscience 27, 995–1000 (1988).

    Article  CAS  Google Scholar 

  7. Bean, B. P. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J. Neurosci. 10, 1–10 (1990).

    Article  CAS  Google Scholar 

  8. Chen, C.-C. et al. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377, 428–431 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Lewis, C. et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Lawson, S. N. in Sensory Neurons (ed. Scott, S. A.) 27–59 (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  11. Willis, W. D. & Coggeshall, R. E. in Sensory Mechanisms of the Spinal Cord 1–49 (Plenum, New York, 1978).

    Book  Google Scholar 

  12. Edwall, L. & Olgart, L. A new technique for recording of intradental sensory nerve activity in man. Pain 3, 121–125 (1977).

    Article  CAS  Google Scholar 

  13. Ahlquist, M. L., Edwall, L., Franzen, O. G. & Haegerstam, G. A. T. Perception of pulpal pain as a function of intradental nerve activity. Pain 19, 353–366 (1984).

    Article  CAS  Google Scholar 

  14. Anderson, D. J. & Matthews, B. Osmotic stimulation of human dentine and the distribution of dental pain thresholds. Archs Oral Biol. 12, 417–426 (1967).

    Article  CAS  Google Scholar 

  15. Ahlquist, M., Franzen, O., Edwall, L., Fors, U. & Haegerstam, G. in Advances in Pain Research and Therapy Vol. 9 (ed. Fields, H. L.) 351–359 (Raven, New York, 1985).

    Google Scholar 

  16. Taddese, A., Nah, S. Y. & McCleskey, E. W. Selective opioid inhibition of small nociceptive neurons. Science 270, 1366–1369 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Jyvasjarvi, E. & Kniffki, K.-D. Cold stimulation of teeth: A comparison between the responses of cat intradental AΔ and C files and human sensation. J. Physiol. 391, 193–207 (1987).

    Article  CAS  Google Scholar 

  18. Narhi, M., Yamamoto, H., Ngassapa, D. & Hirvonen, T. The neurophysiological basis and the role of inflammatory reactions in dentine hypersensitivity. Archs Oral Biol. 39, 23a–30s (1994).

    Google Scholar 

  19. Cody, F. W. J., Lee, R. W. H. & Taylor, A. A functional analysis of the components of the mesencephalic nucleus of the fifth nerve in the cat. J. Physiol. 226, 249–261 (1972).

    Article  CAS  Google Scholar 

  20. Corbin, K. B. & Harrison, F. Function of mesencephalic root of fifth cranial nerve. J. Neurophysiol. 3, 425–435 (1940).

    Article  Google Scholar 

  21. Holton, P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J. Physiol. 145, 494–504 (1959).

    Article  CAS  Google Scholar 

  22. Khahk, B. S., Humphrey, P. P. A. & Henderson, G. ATP-gated cation channels (P2X purinoceptors) in trigeminal mesencephalic nucleus neurones of the rat. J. Physiol. 498, 709–715 (1997).

    Article  Google Scholar 

  23. Valera, S. et al. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516–519 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Collo, G. et al. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507 (1996).

    Article  CAS  Google Scholar 

  25. Vulchanova, L. et al. Differential distribution of two ATP-gated ion channels (P2X receptors) determined by immunocytochemistry. Proc. Natl Acad. Sci. USA 93, 8063–8067 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Nakamura, F. & Strittmatter, S. M. P2Y1 purinergic receptors in sensory neurons: Contribution to touch-induced impulse generation. Proc. Natl. Acad. Sci. USA 93, 10465–10470 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Phillis, J. W. & Kirkpatrick, J. R. The actions of adenosine and various nucleosides and nucleotides on the isolated toad spinal cord. Gen. Pharmacol. 9, 239–247 (1978).

    Article  CAS  Google Scholar 

  29. Lester, R. A., Tong, G. & Jahr, C. E. Interactions between the glycine and glutamate bindings sites of the NMDA receptor. J. Neurosci. 13, 1088–1096 (1993).

    Article  CAS  Google Scholar 

  30. Arvidsson, U. et al. Distribution and targeting of a mu-opioid receptor (MORl) in brain and spinal cord. J. Neurosci. 15, 3328–3341 (1995).

    Article  CAS  Google Scholar 

  31. Abercrombie, M. Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247 (1946).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, S., Vulchanova, L., Hargreaves, K. et al. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387, 505–508 (1997). https://doi.org/10.1038/387505a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387505a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing