Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recombination of protein domains facilitated by co-translational folding in eukaryotes

Abstract

The evolution of complex genomes requires that new combinations of pre-existing protein domains successfully fold into modular polypeptides. During eukaryotic translation model two-domain polypeptides fold efficiently by sequential and co-translational folding of their domains. In contrast, folding of the same proteins in Escherichia coli is post-translational, and leads to intramolecular misfolding of concurrently folding domains. Sequential domain folding in eukaryotes may have been critical in the evolution of modular polypeptides, by increasing the probability that random gene-fusion events resulted in immediately foldable protein structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A comparison of protein length distributions for Caenorhabditis elegans, Saccharomyces cerevisiae, E. coli and the archaebacterium Methanococcus jannaschi.
Figure 2: Refolding in vitro of Ras–DHFR fusion proteins.
Figure 3: Partitioning of in vitro refolded Ras–DHFR into native and non-native folds.
Figure 4: Efficient folding of Ras–DHFR upon translation in reticulocyte lysate.
Figure 5: Co-translational folding of Ras-DHFR in the eukaryotic cytosol.
Figure 6: Post-translational folding of Ras–DHFR–His in E.coli cytosol.
Figure 7: Post-translational and co-translational folding of E.coli OmpR.

Similar content being viewed by others

References

  1. Gilbert, W. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. LII, 901–905 (1987).

    Article  Google Scholar 

  2. Blake, C. C. F. Exons and the evolution of proteins. Int. Rev. Cytol. 93, 149–185 (1985).

    Article  CAS  Google Scholar 

  3. Doolittle, R. F. & Bork, P. Evolutionary mobile modules in proteins. Sci. Am. 269, 50–56 ((1993)).

    Article  CAS  Google Scholar 

  4. Stolzfus, A., Spencer, D. F., Zuker, M., Logsdon, J. M. & Doolittle, W. F. Testing the exon theory of genes: The evidence from protein structure. Science 265, 202–207 (1994).

    Article  ADS  Google Scholar 

  5. Richardson, J. S. Describing patterns of protein tertiary structure. Methods Enzymol. 115, 341–380 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Doolittle, RF. The multiplicity of domains in proteins. Annu. Rev. Biochem. 64, 287–314 (1995).

    Article  CAS  Google Scholar 

  7. Orengo, C. A., Jones, D. T. & Thornton, J. M. Protein superfamilies and domain superfolds. Nature 372, 631–634 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Jaenicke, R. Folding and association of proteins. Prog. Biophys. Mol. Biol. 49, 117–237 (1987).

    Article  CAS  Google Scholar 

  9. Marston, F. A. O. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240, 1–12 (1986).

    Article  CAS  Google Scholar 

  10. Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 381, 571–580 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Kubota, H., Hynes, G. & Willison, K. The chaperonin containing t-complex polypeptide 1 (TCP-1)—Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230, 3–16 (1995).

    Article  CAS  Google Scholar 

  12. Lewis, S. A., Tian, G. L., Vainberg, I. E. & Cowan, N. J. Chaperonin-mediated folding of actin and tubulin. J. Cell Biol. 132, 1–4 (1996).

    Article  CAS  Google Scholar 

  13. Weissman, J. S. & Kim, P. The Pro region of BPTI facilitates folding. Cell 71, 841–851 (1992).

    Article  CAS  Google Scholar 

  14. Stewart, M. L., Grollman, A. P. & Huang, M. -T. Aurintricarboxylic acid: Inhibitor of initiation of protein synthesis. Proc. Natl Acad. Sci. USA 68, 97–101 (1971).

    Article  ADS  CAS  Google Scholar 

  15. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111–117 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Gesteland, R. F. Unfolding of Escherichia coli ribosomes by removal of magnesium. J. Mol. Biol. 18, 356–371 (1966).

    Article  CAS  Google Scholar 

  17. Martin, J. et al. Chaperonin-mediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate. Nature 352, 36–42 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Kenney, L. J., Bauer, M. D. & Silhavy, T. J. Phosphorylation-dependent conformational changes in OmpR, an osmoregulatory DNA-binding protein of Escherichia coli. Proc. Natl Acad. Sci. USA 92, 8866–8870 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Martinez-Hackert, E. & Stock, A. M. The DNA-binding domain of OmpR: crystal structure of a winged helix transcription factor. Structure 5, 109–124 (1997).

    Article  CAS  Google Scholar 

  20. Chotia, C. One thousand families for the molecular biologist. Nature 357, 543–544 (1992).

    Article  ADS  Google Scholar 

  21. Bergman, L. W. & Kuehl, W. M. Formation of an intrachain disulfide bond on nascent immunoglobulin. J. Biol. Chem. 254, 8869–8876 (1979).

    CAS  PubMed  Google Scholar 

  22. Chen, W., Helenius, J., Braakman, I. & Helenius, A. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc. Natl Acad. Sci. USA 92, 6229–6233 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Kolb, V. A., Makeyev, E. V. & Spirin, A. S. Folding of firefly luciferase during translation in a cell-free system. EMBO J. 13, 3631–3637 (1994).

    Article  CAS  Google Scholar 

  24. Gaitanaris, G. A., Vysokanov, A., Hung, S. -Z., Gottesman, M. & Gragerov, A. Successive action of E. coli chaperones in vivo. Mol. Microbiol. 14, 861–869 (1994).

    Article  CAS  Google Scholar 

  25. Bremer, H. & Dennis, P. P. in Escherichia coli and Salmonella: Cellular and Molecular Biology(ed. Neidhardt, F. C.) 1553–1569 (ASM, Washington DC, (1996)).

    Google Scholar 

  26. LaVallie, E. R. & McCoy, J. M. Gene fusion expression systems in Escherichia coli. Curr. Opin. Biotechnol. 6, 501–506 (1995).

    Article  CAS  Google Scholar 

  27. Sharrocks, A. D. AT7 expression vector for producing N- and C-terminal fusion proteins with glutathioone S-transferase. Gene 138, 105–108 (1994).

    Article  CAS  Google Scholar 

  28. Hawkins, A. R. & Lamb, H. K. The molecular biology of multidomain proteins. Selected examples. Eur. J. Biochem. 232, 7–18 (1995).

    Article  CAS  Google Scholar 

  29. Horwich, A. L., Low, K. B., Fenton, W. A., Hirschfield, I. N. & Furtak, K. Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74, 909–917 (1993).

    Article  CAS  Google Scholar 

  30. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F. & Holmes, K. C. Atomic structure of the actin: DNAse I complex. Nature 347, 37–44 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Beckmann, R. P., Mizzen, L. A. & Welch, W. J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 248, 850–854 (1990).

    Article  ADS  CAS  Google Scholar 

  32. Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E. A. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1993).

    Article  Google Scholar 

  33. Mayhew, M. et al. Protein folding in the central cavity of the GroEL–GroES chaperonin complex. Nature 379, 420–426 (1996).

    Article  ADS  CAS  Google Scholar 

  34. Feuerstein, J., Goody, R. S. & Wittinghofer, A. Properties and characterization of nucleotide-free and metal ion-free p21 “Apoprotein”. J. Biol. Chem. 262, 8455–8458 (1987).

    CAS  PubMed  Google Scholar 

  35. Pratt, J. M. in Transcription and Translation: A Practical Approach(eds Hames, B. D. & Higgins, S. J.) 179–210 (IRL, Oxford, (1984)).

    Google Scholar 

  36. Cameau, D. E., Ikenaka, K., Tsung, K. L. & Inouye, M. Primary characterization of the protein products of the Escherichia coli ompB locus: structure and regulation of synthesis of the OmpR and EnvZ proteins. J. Bacteriol. 164, 578–584 (1985).

    Google Scholar 

  37. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    Article  ADS  CAS  Google Scholar 

  38. Ausubel, F. M. et al. Current Protocols in Molecular Biology pp. 6.11.5 (Wiley, New York, (1993).

    Google Scholar 

  39. Tucker, J. et al. Expression of p21 proteins in Escherichia coli and stereochemistry of th nucleotide-binding site. EMBO J. 5, 1351–1358 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Ewalt for assistance with the in vivo labelling experiments; M. K. Hayer-Hartl for the fluorescence analysis; R. Deep and E. Breslow for circular dichroism measurements; J. E. Rothman, J. Young, M. Tector and W. Houry for critically reading the manuscript; and various colleagues for providing support in the genomic analysis (listed in Fig. 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ulrich Hartl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Netzer, W., Hartl, F. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388, 343–349 (1997). https://doi.org/10.1038/41024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41024

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing