Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure and mechanism of a calcium-gated potassium channel

Abstract

Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K+ channel that opens in response to intracellular Ca2+. We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K+ channel (MthK) from Methanobacterium thermoautotrophicum in the Ca2+-bound, opened state. Eight RCK domains (regulators of K+ conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca2+ binding in a simple manner to perform mechanical work to open the pore.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ligand-activated ion channel gating.
Figure 2: Sequence analysis of proteins containing RCK domains.
Figure 3: Biochemical analysis of MthK.
Figure 4: Electrophysiological analysis of MthK in lipid bilayers.
Figure 5: Structure of the MthK K+ channel.
Figure 6: Structure of the gating ring.
Figure 7: Comparison of different RCK domains reveals possible gating motions.
Figure 8: Proposed mechanism of gating.

Similar content being viewed by others

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 2001)

    Google Scholar 

  2. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Sigworth, F. J. Voltage gating of ion channels. Q. Rev. Biophys. 27, 1–40 (1994)

    Article  CAS  Google Scholar 

  6. Bezanilla, F. The voltage sensor in voltage-dependent ion channels. Physiol. Rev. 80, 555–592 (2000)

    Article  CAS  Google Scholar 

  7. Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19, 235–263 (1996)

    Article  CAS  Google Scholar 

  8. Finn, J. T., Grunwald, M. E. & Yau, K. W. Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annu. Rev. Physiol. 58, 395–426 (1996)

    Article  CAS  Google Scholar 

  9. Schreiber, M. & Salkoff, L. A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355–1363 (1997)

    Article  CAS  Google Scholar 

  10. Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Jiang, Y., Pico, A., Cadene, M., Chait, B. T. & MacKinnon, R. Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29, 593–601 (2001)

    Article  CAS  Google Scholar 

  12. Sack, J. S., Saper, M. A. & Quiocho, F. A. Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J. Mol. Biol. 206, 171–191 (1989)

    Article  CAS  Google Scholar 

  13. Zou, J. Y., Flocco, M. M. & Mowbray, S. L. The 1.7 Å refined X-ray structure of the periplasmic glucose/galactose receptor from Salmonella typhimurium. J. Mol. Biol. 233, 739–752 (1993)

    Article  CAS  Google Scholar 

  14. Bjorkman, A. J. et al. Probing protein-protein interactions. The ribose-binding protein in bacterial transport and chemotaxis. J. Biol. Chem. 269, 30206–30211 (1994)

    CAS  Google Scholar 

  15. Bellamacina, C. R. The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 10, 1257–1269 (1996)

    Article  CAS  Google Scholar 

  16. Schlosser, A., Hamann, A., Bossemeyer, D., Schneider, E. & Bakker, E. P. NAD+ binding to the Escherichia coli K(+)-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport. Mol. Microbiol. 9, 533–543 (1993)

    Article  CAS  Google Scholar 

  17. Miller, C., Moczydlowski, E., Latorre, R. & Phillips, M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature 313, 316–318 (1985)

    Article  ADS  CAS  Google Scholar 

  18. MacKinnon, R. & Miller, C. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science 245, 1382–1385 (1989)

    Article  ADS  CAS  Google Scholar 

  19. Moczydlowski, E. & Latorre, R. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage- dependent Ca2+ binding reactions. J. Gen. Physiol. 82, 511–542 (1983)

    Article  CAS  Google Scholar 

  20. Vergara, C. & Latorre, R. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade. J. Gen. Physiol. 82, 543–568 (1983)

    Article  CAS  Google Scholar 

  21. Cox, D. H., Cui, J. & Aldrich, R. W. Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels. J. Gen. Physiol. 109, 633–646 (1997)

    Article  CAS  Google Scholar 

  22. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Mayer, M. L., Olson, R. & Gouaux, E. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311, 815–836 (2001)

    Article  CAS  Google Scholar 

  24. Armstrong, N., Sun, Y., Chen, G. Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Golowasch, J., Kirkwood, A. & Miller, C. Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle. J. Exp. Biol. 124, 5–13 (1986)

    CAS  Google Scholar 

  26. Cadene, M. & Chait, B. T. A robust, detergent-friendly method for mass spectrometric analysis of integral membrane proteins. Anal. Chem. 72, 5655–5658 (2000)

    Article  CAS  Google Scholar 

  27. Cohen, S. L. & Chait, B. T. Mass spectrometry as a tool for protein crystallography. Ann. Rev. Biophys. Biomol. Struct. 30, 67–85 (2001)

    Article  CAS  Google Scholar 

  28. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  29. Terwilliger, T. C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55 4, 849–861 (1999)

    Article  CAS  Google Scholar 

  30. Weeks, C. M. & Miller, R. The design and implementation of SnB version 2.0. J. Appl. Cryst. 32, 120–124 (1999)

    Article  CAS  Google Scholar 

  31. Collaborative Computational Project No. 4 The CCP4 suite: programs for X-ray crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  32. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  33. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996)

    Article  CAS  Google Scholar 

  34. Cowtan, K. Modified phased translation functions and their application to molecular-fragment location. Acta Crystallogr. D 54 5, 750–756 (1998)

    Article  CAS  Google Scholar 

  35. Kleywegt, G. J. & Jones, T. A. in From the First Map to Final Model Proceedings of the CCP4 study weekend (eds Bailey, S., Hubbard, R. & Waller, D.) 59–66 (Daresbury Laboratory, Daresbury, 1994)

    Google Scholar 

  36. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  37. Brunger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  CAS  Google Scholar 

  38. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single streptomyces lividans K+ channels. Functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999)

    Article  CAS  Google Scholar 

  39. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997)

    Article  CAS  Google Scholar 

  40. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  41. Esnouf, R. M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–133 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the NSLS, Brookhaven National Laboratory, X-25, Cornell High Energy Synchrotron Source, F1 and ALS, Lawrence Berkeley Laboratory, 5.0.2 for synchrotron support; members of the MacKinnon laboratory, P. Model and M. Russel for discussion; C. Miller and D. Gadsby for critical reading of the manuscript; and W. Chin for help in manuscript preparation. This work was supported by grants from the NIH to R.M. and the National Centre for Research Resources, NIH, to B.T.C. R.M. is an investigator in the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick MacKinnon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Lee, A., Chen, J. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002). https://doi.org/10.1038/417515a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/417515a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing