Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The antiquity of RNA-based evolution

Abstract

All life that is known to exist on Earth today and all life for which there is evidence in the geological record seems to be of the same form — one based on DNA genomes and protein enzymes. Yet there are strong reasons to conclude that DNA- and protein-based life was preceded by a simpler life form based primarily on RNA. This earlier era is referred to as the 'RNA world', during which the genetic information resided in the sequence of RNA molecules and the phenotype derived from the catalytic properties of RNA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Prebiotic clutter surrounding RNA.
Figure 3: Candidate precursors to RNA during the early history of life on Earth.
Figure 4: Successive phases in the in vitro evolution of an RNA polymerase ribozyme.
Figure 5: Hypothetical pathway for RNA-catalysed synthesis of RNA.
Figure 6: Hypothetical pathway for RNA-catalysed protein synthesis.

Similar content being viewed by others

References

  1. Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Wimberly, B. T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–338 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yusupov, M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Unrau, P. J. & Bartel, D. P. RNA-catalysed nucleotide synthesis. Nature 395, 260–263 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Johnston, W. K., Unrau, P. J., Lawrence, M. S., Glasner, M. E. & Bartel, D. P. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319–1325 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Lee, N., Bessho, Y., Wei, K., Szostak, J. W. & Suga, H. Ribozyme-catalyzed tRNA aminoacylation. Nature Struct. Biol. 7, 28–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, B. & Cech, T. R. Peptide bond formation by in vitro selected ribozymes. Nature 390, 96–100 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. von Kiedrowski, G. A self-replicating hexadeoxynucleotide. Angew. Chem. 25, 932–935 (1986).

    Article  Google Scholar 

  9. Gilbert, W. The RNA world. Nature 319, 618 (1986).

    Article  ADS  Google Scholar 

  10. Joyce, G. F. RNA evolution and the origins of life. Nature 338, 217–224 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ferris, J. P., Sanchez, R. A. & Orgel, L. E. Studies in prebiotic synthesis III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol. 33, 693–704 (1968).

    Article  CAS  PubMed  Google Scholar 

  12. Robertson, M. P. & Miller, S. L. An efficient prebiotic synthesis of cytosine and uracil. Nature 375, 772–774 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lohrmann, R. & Orgel, L. E. Prebiotic synthesis: phosphorylation in aqueous solution. Science 161, 64–66 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Fuller, W. D., Sanchez, R. A. & Orgel, L. E. Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. J. Mol. Biol. 67, 25–33 (1972).

    Article  CAS  PubMed  Google Scholar 

  15. Müller, D. et al. Chemie von α-Aminonitrilen. Aldomerisierung von Glykolaldehydphosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac.-Allose-2,4,6-triphosphat und rac.-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte. Helv. Chim. Acta 73, 1410–1468 (1990).

    Article  Google Scholar 

  16. Krishnamurthy, R., Pitsch, S. & Arrhenius, G. Mineral induced formation of pentose-2,4-bisphosphates. Origins Life Evol. Biosph. 29, 139–152 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Ferris, J. P. & Ertem, G. Oligomerization of ribonucleotides on montmorillonite: reaction of the 5′-phosphorimidazolide of adenosine. Science 257, 1387–1389 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Eschenmoser, A. Chemical etiology of nucleic acid structure. Science 284, 2118–2124 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Schöning, K.-U. et al. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′→2′) oligonucleotide system. Science 290, 1347–1351 (2000).

    Article  ADS  PubMed  Google Scholar 

  20. Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Nelson, K. E., Levy, M. & Miller, S. L. Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc. Natl Acad. Sci. USA 97, 3868–3871 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joyce, G. F. et al. Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310, 602–604 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Schmidt, J. G., Nielsen, P. E. & Orgel, L. E. Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template. J. Am. Chem. Soc. 119, 1494–1495 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Eriksson, M. et al. Sequence dependent N-terminal rearrangement and degradation of peptide nucleic acid (PNA) in aqueous solution. New J. Chem. 22, 1055–1059 (1998).

    Article  CAS  Google Scholar 

  25. Spach, G. Chiral versus chemical evolutions and the appearance of life. Origins Life Evol. Biosph. 14, 433–437 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Joyce, G. F., Schwartz, A. W., Miller, S. L. & Orgel, L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl Acad. Sci. USA 84, 4398–4402 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schneider, K. C. & Benner, S. A. Oligonucleotides containing flexible nucleoside analogues. J. Am. Chem. Soc. 112, 453–455 (1990).

    Article  CAS  Google Scholar 

  28. Merle, Y., Bonneil, E., Merle, L., Sagi, J. & Szemzo, A. Acyclic oligonucleotide analogues. Int. J. Biol. Macromol. 17, 239–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Chaput, J. C. & Switzer, C. Nonenzymatic oligomerization on templates containing phosphoester-linked acyclic glycerol nucleic acid analogues. J. Mol. Evol. 51, 464–470 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Pitsch, S., Wendeborn, S., Jaun, B. & Eschenmoser, A. Why pentose- and not hexose nucleic acids? Pyranosyl-RNA ('p-RNA'). Helv. Chim. Acta 76, 2161–2183 (1993).

    Article  CAS  Google Scholar 

  31. Pitsch, S. et al. Pyranosyl-RNA ('p-RNA'): base-pairing selectivity and potential to replicate. Helv. Chim. Acta 78, 1621–1635 (1995).

    Article  CAS  Google Scholar 

  32. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Tjivikua, T., Ballester, P. & Rebek, J. Jr A self-replicating system. J. Am. Chem. Soc. 112, 1249–1250 (1990).

    Article  CAS  Google Scholar 

  34. Cairns-Smith, A. G. The origin of life and the nature of the primitive gene. J. Theor. Biol. 10, 53–88 (1966).

    Article  CAS  PubMed  Google Scholar 

  35. Cairns-Smith, A. G. & Davies, C. J. in Encyclopaedia of Ignorance (eds Duncan, R. & Weston-Smith, M.) 391–403 (Pergamon, Oxford, 1977).

    Google Scholar 

  36. James, K. D. & Ellington, A. D. The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function. Origins Life Evol. Biosph. 29, 375–390 (1999).

    Article  ADS  CAS  Google Scholar 

  37. Kirby, A. J. & Younas, M. The reactivity of phosphate esters. Diester hydrolysis. J. Chem. Soc. B 510–513 (1970).

  38. Admiraal, S. J. & Herschlag, D. Catalysis of phosphoryl transfer from ATP by amine nucleophiles. J. Am. Chem. Soc. 121, 5837–5845 (1999).

    Article  CAS  Google Scholar 

  39. Rohatgi, R., Bartel, D. P. & Szostak, J. W. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J. Am. Chem. Soc. 118, 3332–3339 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372 (1999).

    Article  CAS  Google Scholar 

  41. Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Ekland, E. H., Szostak, J. W. & Bartel, D. P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science 269, 364–370 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Ekland, E. H. & Bartel, D. P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature 382, 373–376 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Jaeger, L., Wright, M. C. & Joyce, G. F. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. Proc. Natl Acad. Sci. USA 96, 14712–14717 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. McGinness, K. E. & Joyce, G. F. RNA-catalyzed RNA ligation on an external RNA template. Chem. Biol. 9, 297–307 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Robertson, M. P. & Ellington, A. D. In vitro selection of an allosteric ribozyme that transduces analytes into amplicons. Nature Biotechnol. 17, 62–66 (1999).

    Article  CAS  Google Scholar 

  50. Rogers, J. & Joyce, G. F. The effect of cytidine on the structure and function of an RNA ligase ribozyme. RNA 7, 395–404 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Landweber, L. F. & Pokrovskaya, I. D. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc. Natl. Acad. Sci. USA 96, 173–178 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Orgel, L. E. & Lohrmann, R. Prebiotic chemistry and nucleic acid replication. Acc. Chem. Res. 7, 368–377 (1974).

    Article  CAS  Google Scholar 

  54. Lorsch, J. & Szostak, J. W. In vitro evolution of new ribozymes with polynucleotide kinase activity. Nature 371, 31–36 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Huang, F. & Yarus, M. Versatile 5′ phosphoryl coupling of small and large molecules to an RNA. Proc. Natl Acad. Sci. USA 94, 8965–8969 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hager, A. J. & Szostak, J. W. Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem. Biol. 4, 607–617 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. White, H. B. III Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Lohse, P. A. & Szostak, J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature 381, 442–444 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Jenne, A. & Famulok, M. A novel ribozyme with ester transferase activity. Chem. Biol. 5, 23–34 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Wilson, C. & Szostak, J. W. In vitro evolution of a self-alkylating ribozyme. Nature 374, 777–782 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Wecker, M., Smith, D. & Gold, L. In vitro selection of a novel catalytic RNA: characterization of a sulfur alkylation reaction and interaction with a small peptide. RNA 2, 982–994 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tarasow, T. M., Tarasow, S. L. & Eaton, B. E. RNA-catalysed carbon–carbon bond formation. Nature 389, 54–57 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Seelig, B. & Jäschke, A. A small catalytic RNA motif with Diels-Alderase activity. Chem. Biol. 6, 167–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Wiegand, T. W., Janssen, R. C. & Eaton, B. E. Selection of RNA amide synthases. Chem. Biol. 4, 675–683 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Sengle, G., Eisenführ, A., Arora, P. S., Nowick, J. S. & Famulok, M. Novel RNA catalysts for the Michael reaction. Chem. Biol. 8, 459–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Freeland, S. J., Knight, R. D. & Landweber, L. F. Do proteins predate DNA? Science 286, 690–692 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Stubbe, J., Ge, J. & Yee, C. S. The evolution of ribonucleotide reduction revisited. Trends Biochem. Sci. 26, 93–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Benner, S. A., Ellington, A. D. & Tauer, A. Modern metabolism as a palimpsest of the RNA world. Proc. Natl Acad. Sci. USA 86, 7054–7058 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schön, A. et al. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322, 281–284 (1986).

    Article  ADS  PubMed  Google Scholar 

  70. Luisi, P. L. About various definitions of life. Origins Life Evol. Biosph. 28, 613–622 (1998).

    Article  ADS  CAS  Google Scholar 

  71. Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Gibson, T. J. & Lamond, A. I. Metabolic complexity in the RNA world and implications for the origin of protein synthesis. J. Mol. Evol. 30, 7–15 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Dobson, C. M., Ellison, G. B., Tuck, A. F. & Vaida, V. V. Atmospheric aerosols as prebiotic chemical reactors. Proc. Natl Acad. Sci. USA 97, 11864–11868 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brack, A. & Orgel, L. E. β structures of alternating polypeptides and their possible prebiotic significance. Nature 256, 383–387 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Ourisson, G. & Nakatani, Y. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1, 11–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Kumar, R. K. & Yarus, M. RNA-catalyzed amino acid activation. Biochemistry 40, 6998–7004 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Illangasekare, M., Sanchez, G., Nickles, T. & Yarus, M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267, 643–647 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Illangasekare, M. & Yarus, M. Small-molecule-substrate interactions with a self-aminoacylating ribozyme. J. Mol. Biol. 268, 631–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Saito, H., Kourouklis, D. & Suga, H. An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J. 20, 1797–1806 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Weber, A. L. & Orgel, L. E. Poly(U)-directed peptide bond formation from the 2′(3′)-glycyl esters of adenosine derivatives. J. Mol. Evol. 16, 1–10 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  81. Barta, A. et al. Mechanism of ribosomal peptide bond formation. Science 291, 203a (2001) (published online at http://www.sciencemag.org/cgi/content/full/291/5502/203a).

    Article  Google Scholar 

  82. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Zhang, B. & Cech, T. R. Peptidyl-transferase ribozymes: trans reactions, structural characterization and ribosomal RNA-like features. Chem. Biol. 5, 539–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Schimmel, P. & Henderson, B. Possible role of aminoacyl-RNA complexes in noncoded peptide synthesis and origin of coded synthesis. Proc. Natl Acad. Sci. USA 91, 11283–11286 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Izatt, R. M., Hansen, L. D., Rytting, J. H. & Christensen, J. J. Proton ionization from adenosine. J. Am. Chem. Soc. 87, 2760–2761 (1965).

    Article  CAS  PubMed  Google Scholar 

  86. Sugimoto, N., Tomka, M., Kierzek, R., Bevilacqua, P. C. & Turner, D. H. Effects of substrate structure on the kinetics of circle opening reactions of the self-splicing intervening sequence from Tetrahymena thermophila: evidence for substrate and Mg2+ binding interactions. Nucleic Acids Res. 17, 355–371 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Orgel, L. E. The origin of polynucleotide-directed protein synthesis. J. Mol. Evol. 29, 465–474 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Weiner, A. M. & Maizels, N. 3′ terminal tRNA-like structures tag genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc. Natl Acad. Sci. USA 84, 7383–7387 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wong, J.-T. Origin of genetically encoded protein synthesis: a model based on selection for RNA peptidation. Origins Life Evol. Biosph. 21, 165–176 (1991).

    Article  ADS  CAS  MathSciNet  Google Scholar 

  90. Schimmel, P. & Ribas de Pouplana, L. Transfer RNA: from minihelix to genetic code. Cell 81, 983–986 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. Roth, A. & Breaker, R. R. An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl Acad. Sci. USA 95, 6027–6031 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Joyce, G. F. Nucleic acid enzymes: playing with a fuller deck. Proc. Natl Acad. Sci. USA 95, 5845–5847 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fontana, W. & Schuster, P. Continuity in evolution: on the nature of transitions. Science 280, 1451–1455 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Schultes, E. A. & Bartel, D. P. One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289, 448–452 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Joyce, G. F. The rise and fall of the RNA world. New Biol. 3, 399–407 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank T. Cech, A. Eschenmoser, R. Krishnamurthy, L. Orgel, N. Paul, P. Schimmel and W. Shih for helpful comments on the manuscript. I acknowledge funding from the National Aeronautics and Space Administration and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald F. Joyce.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyce, G. The antiquity of RNA-based evolution. Nature 418, 214–221 (2002). https://doi.org/10.1038/418214a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/418214a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing