Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCR1

Abstract

Chemoattractant-stimulated granule release from neutrophils, basophils and eosinophils is critical for the innate immune response against infectious bacteria. Interleukin 8 (IL-8) activation of the chemokine receptor CXCR1 was found to stimulate rapid formation of β-arrestin complexes with Hck or c-Fgr. Formation of β-arrestin–Hck complexes led to Hck activation and trafficking of the complexes to granule-rich regions. Granulocytes expressing a dominant-negative β-arrestin–mutant did not release granules or activate tyrosine kinases after IL-8 stimulation. Thus, β-arrestins regulate chemokine-induced granule exocytosis, indicating a broader role for β-arrestins in the regulation of cellular functions than was previously suspected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PP1 blocks degranulation and β-arrestin interacts with Hck in IL-8–stimulated neutrophils.
Figure 2: Dominant-negative β-arrestin 1 P91G-P121E mutant blocks N-acetyl-d-glucosaminidase release and tyrosine phosphorylation.
Figure 3: 4STm-CXCR1 and 8STm-CXCR1 block IL-8–induced degranulation.
Figure 4: Active Hck relocalizes to the areas of granule fusion in RBL-2H3 cells expressing CXCR1 in response to IL-8.
Figure 5: β-arrestin localizes to granules.
Figure 6: Model of β-arrestin–regulated granule release.

Similar content being viewed by others

References

  1. Tapper, H. Out of the phagocyte or into its phagosome: signalling to secretion. Eur. J. Haematol. 57, 191–201 (1996).

    Article  CAS  Google Scholar 

  2. Tapper, H. The secretion of preformed granules by macrophages and neutrophils. J. Leukoc. Biol. 59, 613–622 (1996).

    Article  CAS  Google Scholar 

  3. Borregaard, N., Kjeldsen, L., Lollike, K. & Sengelov, H. Granules and secretory vesicles of the human neutrophil. Clin. Exp. Immunol. 101, 6–9 (1995).

    Article  Google Scholar 

  4. Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).

    CAS  PubMed  Google Scholar 

  5. Tapper, H. & Grinstein, S. Fc receptor-triggered insertion of secretory granules into the plasma membrane of human neutrophils: selective retrieval during phagocytosis. J. Immunol. 159, 409–418 (1997).

    CAS  PubMed  Google Scholar 

  6. Berton, G. Tyrosine kinases in neutrophils. Curr. Opin. Hematol. 6, 51–58 (1999).

    Article  CAS  Google Scholar 

  7. Bolen, J. B., Rowley, R. B., Spana, C. & Tsygankov, A. Y. The Src family of tyrosine protein kinases in hemopoietic signal transduction. FASEB J. 6, 3403–3409 (1992).

    Article  CAS  Google Scholar 

  8. Ligeti, E. & Mocsai, A. Exocytosis of neutrophil granulocytes. Biochem. Pharmacol. 57, 1209–1214 (1999).

    Article  CAS  Google Scholar 

  9. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  Google Scholar 

  10. Mocsai, A., Ligeti, E., Lowell, C. A. & Berton, G. Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck. J. Immunol. 162, 1120–1126 (1999).

    CAS  PubMed  Google Scholar 

  11. Gutkind, J. S. & Robbins, K. C. Translocation of the FGR protein–tyrosine kinase as a consequence of neutrophil activation. Proc. Natl Acad. Sci. USA 86, 8783–8787 (1989).

    Article  CAS  Google Scholar 

  12. Mohn, H., Le, C. V., Fischer, S. & Maridonneau-Parini, I. The src-family protein-tyrosine kinase p59hck is located on the secretory granules in human neutrophils and translocates towards the phagosome during cell activation. Biochem. J. 309, 657–665 (1995).

    Article  Google Scholar 

  13. Welch, H., Mauran, C. & Maridonneau-Parini, I. Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation. Methods 9, 607–618 (1996).

    Article  CAS  Google Scholar 

  14. Welch, H. & Maridonneau-Parini, I. Hck is activated by opsonized zymosan and A23187 in distinct subcellular fractions of human granulocytes. J. Biol. Chem. 272, 102–109 (1997).

    Article  CAS  Google Scholar 

  15. Demoly, P. et al. Myeloperoxidase and interleukin-8 levels in chronic sinusitis. Clin. Exp. Allergy 27, 672–675 (1997).

    Article  CAS  Google Scholar 

  16. Meddows-Taylor, S., Martin, D. J. & Tiemessen, C. T. Impaired interleukin-8-induced degranulation of polymorphonuclear neutrophils from human immunodeficiency virus type 1-infected individuals. Clin. Diagn. Lab. Immunol. 6, 345–351 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Topham, M. K., Carveth, H. J., McIntyre, T. M., Prescott, S. M. & Zimmerman, G. A. Human endothelial cells regulate polymorphonuclear leukocyte degranulation. FASEB J. 12, 733–746 (1998).

    Article  CAS  Google Scholar 

  18. Willems, J., Joniau, M., Cinque, S. & van, D. J. Human granulocyte chemotactic peptide (IL-8) as a specific neutrophil degranulator: comparison with other monokines. Immunology 67, 540–542 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Murphy, P. M. et al. International Union of Pharmacology. XXII. Nomenclature for Chemokine Receptors. Pharmacol. Rev. 52, 145–176.

  20. Murphy, P. M. Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin. Hematol. 34, 311–318 (1997).

    CAS  PubMed  Google Scholar 

  21. Rollins, B. J. Chemokines. Blood 90, 909–928 (1997).

    CAS  PubMed  Google Scholar 

  22. Smith, R. J., Sam, L. M., Leach, K. L. & Justen, J. M. Postreceptor events associated with human neutrophil activation by interleukin-8. J. Leukoc. Biol. 52, 17–26 (1992).

    Article  CAS  Google Scholar 

  23. Chuntharapai, A. & Kim, K. J. Regulation of the expression of IL-8 receptor A/B by IL-8: possible functions of each receptor. J. Immunol. 155, 2587–2594 (1995).

    CAS  PubMed  Google Scholar 

  24. Barlic, J. et al. β-Arrestins regulate interleukin-8-induced CXCR1 internalization. J. Biol. Chem. 274, 16287–16294 (1999).

    Article  CAS  Google Scholar 

  25. Ferguson, S. S. et al. Role of β-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271, 363–366 (1996).

    Article  CAS  Google Scholar 

  26. Ferguson, S. S., Zhang, J., Barak, L. S. & Caron, M. G. Role of β-arrestins in the intracellular trafficking of G-protein- coupled receptors. Adv. Pharmacol. 42, 420–424 (1998).

    Article  CAS  Google Scholar 

  27. Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  CAS  Google Scholar 

  28. Miller, W. E. et al. β-Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. J. Biol. Chem. 275, 11312–11319 (2000).

    Article  CAS  Google Scholar 

  29. Schindler, T. et al. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol. Cell 3, 639–648 (1999).

    Article  CAS  Google Scholar 

  30. Liu, Y. et al. Structural basis for selective inhibition of Src family kinases by PP1. Chem. Biol. 6, 671–678 (1999).

    Article  CAS  Google Scholar 

  31. Robbins, S. M., Quintrell, N. A. & Bishop, J. M. Myristoylation and differential palmitoylation of the HCK protein- tyrosine kinases govern their attachment to membranes and association with caveolae. Mol. Cell Biol. 15, 3507–3515 (1995).

    Article  CAS  Google Scholar 

  32. Goodman, O. B. J. et al. β-Arrestin acts as a clathrin adaptor in endocytosis of the β2- adrenergic receptor. Nature 383, 447–450 (1996).

    Article  CAS  Google Scholar 

  33. Laporte, S. A. et al. The β2-adrenergic receptor/β-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc. Natl Acad. Sci. USA 96, 3712–3717 (1999).

    Article  CAS  Google Scholar 

  34. Prado, G. N., Suzuki, H., Wilkinson, N., Cousins, B. & Navarro, J. Role of the C terminus of the interleukin 8 receptor in signal transduction and internalization. J. Biol. Chem. 271, 19186–19190 (1996).

    Article  CAS  Google Scholar 

  35. Richardson, R. M. et al. Regulation of human interleukin-8 receptor A: identification of a phosphorylation site involved in modulating receptor functions. Biochemistry 34, 14193–14201 (1995).

    Article  CAS  Google Scholar 

  36. Richardson, R. M., Ali, H., Pridgen, B. C., Haribabu, B. & Snyderman, R. Multiple signaling pathways of human interleukin-8 receptor A. Independent regulation by phosphorylation. J. Biol. Chem. 273, 10690–10695 (1998).

    Article  CAS  Google Scholar 

  37. Ben-Baruch, A. et al. Interleukin-8 receptor β. The role of the carboxyl terminus in signal transduction. J. Biol. Chem. 270, 9121–9128 (1995).

    Article  CAS  Google Scholar 

  38. Yang, W., Wang, D. & Richmond, A. Role of clathrin-mediated endocytosis in CXCR2 sequestration, resensitization, and signal transduction. J. Biol. Chem. 274, 11328–11333 (1999).

    Article  CAS  Google Scholar 

  39. Moarefi, I. et al. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385, 650–653 (1997).

    Article  CAS  Google Scholar 

  40. El-Shazly, A., Yamaguchi, N., Masuyama, K., Suda, T. & Ishikawa, T. Novel association of the src family kinases, hck and c-fgr, with CCR3 receptor stimulation: A possible mechanism for eotaxin-induced human eosinophil chemotaxis. Biochem. Biophys. Res. Commun. 264, 163–170 (1999).

    Article  CAS  Google Scholar 

  41. Mellado, M. et al. The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J. Immunol. 161, 805–813 (1998).

    CAS  Google Scholar 

  42. Chen, D. & Whiteheart, S. W. Intracellular localization of SNAP-23 to endosomal compartments. Biochem. Biophys. Res. Commun. 255, 340–346 (1999).

    Article  CAS  Google Scholar 

  43. Mollinedo, F. & Lazo, P. A. Identification of two isoforms of the vesicle-membrane fusion protein SNAP-23 in human neutrophils and HL-60 cells. Biochem. Biophys. Res. Commun. 231, 808–812 (1997).

    Article  CAS  Google Scholar 

  44. Ravichandran, V., Chawla, A. & Roche, P. A. Identification of a novel syntaxin- and synaptobrevin/VAMP-binding protein, SNAP-23, expressed in non-neuronal tissues. J. Biol. Chem. 271, 13300–13303 (1996).

    Article  CAS  Google Scholar 

  45. Vogel, K. & Roche, P. A. SNAP-23 and SNAP-25 are palmitoylated in vivo. Biochem. Biophys. Res. Commun. 258, 407–410 (1999).

    Article  CAS  Google Scholar 

  46. Wong, P. P. et al. Tissue distribution of SNAP-23 and its subcellular localization in 3T3- L1 cells. Biochem. Biophys. Res. Commun. 230, 64–68 (1997).

    Article  CAS  Google Scholar 

  47. Kjeldsen, L., Sengelov, H. & Borregaard, N. Subcellular fractionation of human neutrophils on Percoll density gradients. J. Immunol. Methods 232, 131–143 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Leaist and S. Zawada for technical assistance, and G. Downey for comments on the manuscript. Supported by grants from the Medical Research Council of Canada (to D.J.K., R.D.F and S.S.G.F.), the Medical Research Council-Juvenile Diabetes Foundation International (to D.J.K.), the Heart and Stroke Foundation of Canada (to D.J.K., R.D.F. and S.S.G.F.) and Premiers Research Excellence Award (to D.J.K.). D.J.K. is a Medical Research Council of Canada scholar. S.S.G.F. is a Heart and Stroke Foundation of Canada scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Kelvin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlic, J., Andrews, J., Kelvin, A. et al. Regulation of tyrosine kinase activation and granule release through β-arrestin by CXCR1. Nat Immunol 1, 227–233 (2000). https://doi.org/10.1038/79767

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing