Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice

Abstract

To determine whether uncoupling respiration from oxidative phosphorylation in skeletal muscle is a suitable treatment for obesity and type 2 diabetes, we generated transgenic mice expressing the mitochondrial uncoupling protein (Ucp) in skeletal muscle. Skeletal muscle oxygen consumption was 98% higher in Ucp-L mice (with low expression) and 246% higher in Ucp-H mice (with high expression) than in wild-type mice. Ucp mice fed a chow diet had the same food intake as wild-type mice, but weighed less and had lower levels of glucose and triglycerides and better glucose tolerance than did control mice. Ucp-L mice were resistant to obesity induced by two different high-fat diets. Ucp-L mice fed a high-fat diet had less adiposity, lower levels of glucose, insulin and cholesterol, and an increased metabolic rate at rest and with exercise. They were also more responsive to insulin, and had enhanced glucose transport in skeletal muscle in the setting of increased muscle triglyceride content. These data suggest that manipulating respiratory uncoupling in muscle is a viable treatment for obesity and its metabolic sequelae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of the Ucp transgene is limited to skeletal muscle.
Figure 2: Glucose- and insulin-tolerance tests in mice fed a chow diet.
Figure 3: Effects of high-fat diet on body weight in mice.
Figure 4: Enhanced glucose tolerance and insulin responsiveness in Ucp-L mice fed a ‘Western’ diet.

Similar content being viewed by others

References

  1. Saraste, M. Oxidative phosphorylation at the fin de siècleM. Science 283, 1488–1493 ( 1999).

    Article  CAS  Google Scholar 

  2. Klingenberg, M. & Winkler, E. The reconstituted isolated uncoupling protein is a membrane potential-driven H+ translocator . EMBO J. 4, 3087–3092 (1985).

    Article  CAS  Google Scholar 

  3. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90– 94 (1997).

    Article  CAS  Google Scholar 

  4. Ravussin, E. et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N. Engl. J. Med. 318, 467– 472 (1988).

    Article  CAS  Google Scholar 

  5. Holloszy, J.O. & Booth, F.W. Biochemical adaptations to endurance exercise in muscle. Ann. Rev. Physiol. 38, 273–291 (1976).

    Article  CAS  Google Scholar 

  6. Boss, O., Hagen, T. & Lowell, B.B. Uncoupling proteins 2 and 3: Potential regulators of mitochondrial energy metabolism. Diabetes 49, 143–156 (2000).

    Article  CAS  Google Scholar 

  7. Chung, W.K. et al. Genetic and physiologic analysis of the role of uncoupling protein 3 in human energy homeostasis. Diabetes 48, 1890–1895 (1999).

    Article  CAS  Google Scholar 

  8. Argyropoulos, G. et al. Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes. J. Clin. Invest. 102, 1345– 1351 (1998).

    Article  CAS  Google Scholar 

  9. Gong, D-W. et al. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J. Biol. Chem. 275, 16251–16257 (2000).

    Article  CAS  Google Scholar 

  10. Vidal-Puig, A.J. et al. Energy metabolism in uncoupling protein 3 knockout mice. J. Biol. Chem. 275, 16258–16266 (2000).

    Article  CAS  Google Scholar 

  11. Rial, E. et al. Retinoids activate proton transport by the uncoupling proteins UCP1 and UCP2. EMBO J. 18, 5827– 5833 (1999).

    Article  CAS  Google Scholar 

  12. Cline, G.W. et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N. Engl. J. Med. 341, 240–246 ( 1999).

    Article  CAS  Google Scholar 

  13. Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 219, 713–725 (1994).

    Article  CAS  Google Scholar 

  14. Taylor, B.A. & Phillips, S.J. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 34, 389–398 ( 1996).

    Article  CAS  Google Scholar 

  15. Tataranni, P.A. & Ravussin, E. Variability in metabolic rate: biological sites of regulation. Int. J. Obesity 19, S102–S106 ( 1995).

    Google Scholar 

  16. Rolfe, D.F., Newman, J.M., Buckingham, J.A., Clark, M.G. & Brand, M.D. Contribution of mitochondrial proton leak to respiration rate in working skeletal muscle and liver and to SMR. Am. J. Physiol. 276, C692– C699 (1999).

    Article  CAS  Google Scholar 

  17. Ross, R. et al. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann. Intern. Med. 133, 92– 103 (2000).

    Article  CAS  Google Scholar 

  18. Portillo, M.P., Cantoral, R. & Macarulla, M.T. Effects of dietary fat content on adiposity during energy restriction in genetically obese rats. Reprod. Nutr. Dev. 39, 189–199 ( 1999).

    Article  CAS  Google Scholar 

  19. Lowell, B.B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740 –742 (1993).

    Article  CAS  Google Scholar 

  20. Klaus, S., Munzberg, H., Truloff, C. & Heldmaier, G. Physiology of transgenic mice with brown fat ablation: obesity is due to lowered body temperature. Am. J. Physiol. 274, R287 –R293 (1998).

    CAS  PubMed  Google Scholar 

  21. Kopecky, J., Clark, G., Enerback, S., Spiegelman, B. & Kozak, L.P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    Article  CAS  Google Scholar 

  22. Kopecky, J., Hodny, Z., Rossmeisl, M., Syrovy I. & Kozak, L.P. Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution . Am. J. Physiol. E768–E775 (1996).

  23. van den Ouweland, J.M.W. et al. Mutation in mitochondrial tRNA Leu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nature Genetics 1, 368–371 (1992).

    Article  CAS  Google Scholar 

  24. Gerbitz, K.-D., Gempel, K. & Brdiczka, D. Genetic, biochemical, and clinical implications of the cellular energy circuit. Diabetes 45, 113–126 (1996).

    Article  CAS  Google Scholar 

  25. Poulton, J., Brown, M.S., Cooper, A., Marchington, D.R. & Phillips, D.I.W. A common mitochondrial DNA variant is associated with insulin resistance in adult life. Diabetologia 41, 54–58 ( 1998).

    Article  CAS  Google Scholar 

  26. Huang, X. et al. Insulin-regulated mitochondrial gene expression is associated with glucose flux in human skeletal muscle. Diabetes 48, 1508–1524 (1999).

    Article  CAS  Google Scholar 

  27. Holmes, B.F., Kurth-Kraczek, E.J. & Winder, W.W. Chronic activation of 5′-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in skeletal muscle. J. Appl. Physiol. 87, 1990–1995 (1999).

    Article  CAS  Google Scholar 

  28. Hardie, D.G. Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase. Biochim. Biophys. Acta 1123, 231 –238 (1992).

    Article  CAS  Google Scholar 

  29. Hansen, P.A. et al. A high fat diet impairs stimulation of glucose transport in muscle. J. Biol. Chem. 273, 26157– 26163 (1998).

    Article  CAS  Google Scholar 

  30. Han, D.-H., Hansen, P.A., Host, H.H. & Holloszy, J.O. Insulin resistance of muscle glucose transport in rats fed a high-fat diet . Diabetes 46, 1761–1767 (1997).

    Article  CAS  Google Scholar 

  31. Perseghin, G. et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans—A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48, 1600–1606 (1999).

    Article  CAS  Google Scholar 

  32. Hoppeler, H. & Weibel, E.R. Structural and functional limits for oxygen supply to muscle. Acta Physiol. Scand. 168, 445–56 (2000).

    Article  CAS  Google Scholar 

  33. Seip, R.L. & Semenkovich, C.F. Skeletal muscle lipoprotein lipase: molecular regulation and physiological effects in relation to exercise. Exer. Sports Sci. 26, 191– 218 (1998).

    CAS  Google Scholar 

  34. Esposito, L.A., Melov, S., Panov, A., Cottrell, B.A. & Wallace, D.C. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl. Acad. Sci. USA 96, 4820–4825 ( 1999).

    Article  CAS  Google Scholar 

  35. Lee, C-K., Klopp, R.G., Weindruch, R. & Prolla, T.A. Gene expression profile of aging and its retardation by caloric restriction . Science 285, 1390–1393 (1999).

    Article  CAS  Google Scholar 

  36. Beckman, K.B & Ames, B.N. Mitochondrial aging: open questions . Ann. NY Acad. Sci. 854, 118– 127 (1998).

    Article  CAS  Google Scholar 

  37. Li, B., Holloszy, J.O. & Semenkovich, C.F. Respiratory uncoupling induces - aminolevulinate synthase expression through a nuclear respiratory factor-1-dependent mechanism in HeLa cells. J. Biol. Chem. 274, 17534– 17540 (1999).

    Article  CAS  Google Scholar 

  38. Marshall, B.A. et al. Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. J. Biol. Chem. 268, 18442–18445 ( 1993).

    CAS  PubMed  Google Scholar 

  39. Scott, M.D., Baudendistel, L.J. & Dahms, T.E. Rapid separation of creatine, phosphocreatine and adenosine metabolites by ion-pair reversed-phase high performance liquid chromatography in plasma and cardiac tissue. J. Chromatography 576 , 149–154 (1992).

    Article  CAS  Google Scholar 

  40. Uyeda, K. & Racker, E. Regulatory mechanisms in carbohydrate metabolism. VII. Hexokinase and phosphofructokinase. J. Biol. Chem. 240, 4682–4688 (1965).

    CAS  PubMed  Google Scholar 

  41. Coleman, T., Seip, R.L., Gimble, J.M., Lee, D., Maeda, N. & Semenkovich, C.F. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J. Biol. Chem. 270, 12518–12525 (1995).

    Article  CAS  Google Scholar 

  42. Marshall, B.A. et al. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. J. Biol. Chem. 274, 27426–27432 (1999).

    Article  CAS  Google Scholar 

  43. Towler, D.A., Bidder, M., Latifi, T., Coleman, T. & Semenkovich, C.F. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J. Biol. Chem. 273, 30427– 30434 (1998).

    Article  CAS  Google Scholar 

  44. Dobush, G.R., Ankey, C.D. & Kremantz, D.G. The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese. Can. J. Zool. 63, 1917–1920 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (HL58427, DK53198, AG00425 and AG14658), the Washington University Clinical Nutrition Research Unit (DK56341) and the Washington University Diabetes Research and Training Center (DK20579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clay F. Semenkovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Nolte, L., Ju, JS. et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat Med 6, 1115–1120 (2000). https://doi.org/10.1038/80450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing