Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting of the VEGF gene.
Figure 2: Depressed myocardial function and impaired angiogenesis in VEGF120/120 mice.
Figure 3: Ischemia in VEGF120/120 hearts.
Figure 4: Response of VEGF120/120 hearts to ischemia.

References

  1. Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4– 25 (1997).

    Article  CAS  Google Scholar 

  2. Isner, J.M. & Takayuki, A. Therapeutic angiogenesis. Front. Biosci. 3, e49–69 (1998).

    Article  CAS  Google Scholar 

  3. Klagsbrun, M. & D'Amore, P.A. Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev. 7, 259–270 (1996).

    Article  CAS  Google Scholar 

  4. Dvorak, H.F., Brown, L.F., Detmar, M. & Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029 –1039 (1995).

    CAS  PubMed  Google Scholar 

  5. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 ( 1999).

    Article  CAS  Google Scholar 

  6. Keyt, B.A. et al. The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 271, 7788–7795 ( 1996).

    Article  CAS  Google Scholar 

  7. Cheung, N., Wong, M.P., Yuen, S.T., Leung, S.Y. & Chung, L.P. Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum. Pathol. 29, 910–914 (1998).

    Article  CAS  Google Scholar 

  8. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform- specific receptor for vascular endothelial growth factor. Cell 92, 735– 745 (1998).

    Article  CAS  Google Scholar 

  9. Takeshita, S. et al. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab. Invest. 75, 487–501 (1996).

    CAS  PubMed  Google Scholar 

  10. Cheng, S.Y., Nagane, M., Huang, H.S. & Cavenee, W.K. Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc. Natl. Acad. Sci. USA 94, 12081–12087 (1997).

    Article  CAS  Google Scholar 

  11. Tokunaga, T. et al. Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. Br. J. Cancer 77, 998– 1002 (1998).

    Article  CAS  Google Scholar 

  12. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature 380, 435–439 ( 1996).

    Article  CAS  Google Scholar 

  13. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439– 442 (1996).

    Article  CAS  Google Scholar 

  14. Shima, D.T. et al. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J. Biol Chem. 271, 3877–3883 (1996).

    Article  CAS  Google Scholar 

  15. Flameng, W. et al. Relation between coronary artery stenosis and myocardial purine metabolism, histology and regional function in humans. J. Am. Coll. Cardiol. 9, 1235–1242 ( 1987).

    Article  CAS  Google Scholar 

  16. Vanoverschelde, J.L.J. et al. Chronic myocardial hibernation in humans. From bedside to bench. Circulation 95, 1961– 1971 (1997).

    Article  CAS  Google Scholar 

  17. Elsässer, A. & Schaper, J. Hibernating myocardium: adaptation or degeneration? Basic Res. Cardiol. 90, 47–48 (1995).

    PubMed  Google Scholar 

  18. Kloner, R.A., Bolli, R., Marban, E., Reinlib, L. & Braunwald, E. Medical and cellular implications of stunning, hibernation and preconditioning. An NHLBI workshop. Circulation 97, 1848–1867 (1998).

    Article  CAS  Google Scholar 

  19. Borgers, M. in Stunning, Hibernation, and Preconditioning: Clinical Pathophysiology of Myocardial Ischemia. (eds. Heyndrickx, G.R., Vatner, S.F. & Wijns, W.) 287–306 (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  20. Schwarz, E.R. et al. Myocyte degeneration and cell death in hibernating human myocardium. J. Am. Coll. Cardiol. 27, 1577– 1585 (1996).

    Article  CAS  Google Scholar 

  21. Shivalkar, B. et al. Only hibernating myocardium invariably shows early recovery after coronary revascularization. Circulation 94, 308–315 (1996).

    Article  CAS  Google Scholar 

  22. Chen, C. et al. Myocardial cell death and apoptosis in hibernating myocardium. J. Am. Coll. Cardiol. 30, 1407– 1412 (1997).

    Article  CAS  Google Scholar 

  23. Shivalkar, B. Chronic Reversible Myocardial Dysfunction: Clinical and Experimental Studies (PhD thesis, Acta Biomedica Lovaniensa, Leuven University Press, 1998) 1–130 (see attached copies in fax dd April 2nd 1999).

  24. Hudlicka, O. & Brown, M.D. Postnatal growth of the heart and its blood vessels. J. Vasc. Res. 33, 266 –287 (1996).

    Article  CAS  Google Scholar 

  25. Tomanek, R.J. Formation of the coronary vasculature: a brief review. Cardiovasc. Res. 31, E46–51 ( 1996).

    Article  Google Scholar 

  26. Hirschi, K.K., Rohovsky, S.A. & D'Amore, P.A. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate [published erratum in J. Cell Biol. 141 , 1287 (1998)]. J. Cell. Biol. 141, 805–814 (1998).

    Article  CAS  Google Scholar 

  27. Koblizek, T.I., Weiss, C., Yancopoulos, G.D., Deutsch, U. & Risau, W. Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr. Biol. 8, 529– 532 (1998).

    Article  CAS  Google Scholar 

  28. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  29. Evans, S.M. et al. Identification of hypoxia in cells and tissues of epigastric 9L rat glioma using EF5 (2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide). Br. J. Cancer 72, 875– 882 (1995).

    Article  CAS  Google Scholar 

  30. Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation, and tumor angiogenesis. Nature 394, 485– 490 (1998).

    Article  CAS  Google Scholar 

  31. Zareba, W., Moss, A.J. & le Cessie, S. Dispersion of ventricular repolarization and arrhythmic cardiac death in coronary artery disease. Am. J. Cardiol. 74, 550–553 (1994).

    Article  CAS  Google Scholar 

  32. Kaprielian, R.R. et al. Downregulation of immunodetectable connexin 43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation 97, 651– 660 (1998).

    Article  CAS  Google Scholar 

  33. Schaper, J. et al. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83, 504–514 (1991).

    Article  CAS  Google Scholar 

  34. Elsässer, A. et al. Hibernating myocardium. An incomplete adaptation to ischemia. Circulation 96, 2920–2931 (1997).

    Article  Google Scholar 

  35. Ausma, J. et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96, 3157–3163 (1997).

    Article  CAS  Google Scholar 

  36. Lopaschuk, G.D., Collins-Nakai, R.L. & Itoi, T. Developmental changes in energy substrate use by the heart. Cariovasc. Res. 26, 1172– 1180 (1992).

    Article  CAS  Google Scholar 

  37. Murda'h, M.A., McKenna, W.J. & Camm, A.J. Repolarization alternans: techniques, mechanisms, and cardiac vulnerability. Pacing Clin. Electrophysiol. 20, 2641–2657 (1997).

    Article  CAS  Google Scholar 

  38. Shaw, D.B., Linker, N.J., Heaver, P.A. & Evans, R. Chronic sinoatrial disorder (sick sinus syndrome): a possible result of cardiac ischaemia. Br. Heart J. 58, 598– 607 (1987).

    Article  CAS  Google Scholar 

  39. Lopaschuk, G.D. & Stanley, W.C. Glucose metabolism in the ischemic heart. Circulation 85, 313 –315 (1997).

    Article  Google Scholar 

  40. Kremer, C., Breier, G., Risau, W. & Plate, K.H. Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res. 57, 3852–3859 (1997).

    CAS  PubMed  Google Scholar 

  41. Risau, W. Development and differentiation of endothelium. Kidney Int. Suppl. 67, S3–6 (1998 ).

    Article  CAS  Google Scholar 

  42. Witzenbichler, B. et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am. J. Pathol. 153, 381–394 ( 1998).

    Article  CAS  Google Scholar 

  43. Gerber, H.P., Condorelli, F., Park, J. & Ferrara, N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J. Biol. Chem. 272, 23659–23667 (1997).

    Article  CAS  Google Scholar 

  44. Carmeliet, P. et al. Role of tissue factor in embryonic blood vessel development. Nature 383, 73–75 (1996).

    Article  CAS  Google Scholar 

  45. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Wynants (Janssen Pharmaceutical, Beerse, Belgium) for analysis of high-energy phosphates; E.M. Lord (University of Rochester) for the ELK3.51 antibodies; K. Bijnens, A. Bouché, M. De Mol, E. Gils, B. Hermans, S. Jansen, L. Kieckens, A. Manderveld, T. Vancoetsem, A. Vandenhoeck, A. Van den Boomen, P. Van Wesemael and S. Wyns (The Center for Transgene Technology and Gene Therapy, Belgium), V. Leunens (Laboratory of Experimental Cardiac Surgery, Belgium), D. Goulding (Thrombosis Research Institute, London) and E.R. Perriard (Institute for Cell Biology, Zürich) for technical assistance; and M. Deprez (The Center for Transgene Technology and Gene Therapy, Belgium) for artwork. This work was supported by grants from the BIOMED (PL963380) to P.C. and D.C., the NIH (CA45548) to P.A.D., the Swiss National Science Foundation (31-37537-93 and 31-52417-97) to J.C.P. and by a postdoctoral fellowship to G.T. from the IMF, University of Münster, Germany. P.A.D. is a Jules and Davis Stein Research to Prevent Blindness professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, P., Ng, YS., Nuyens, D. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5, 495–502 (1999). https://doi.org/10.1038/8379

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing