Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional analysis of secreted and transmembrane proteins critical to mouse development

Abstract

We describe the successful application of a modified gene-trap approach, the secretory trap, to systematically analyze the functions in vivo of large numbers of genes encoding secreted and membrane proteins. Secretory-trap insertions in embryonic stem cells can be transmitted to the germ line of mice with high efficiency and effectively mutate the target gene. Of 60 insertions analyzed in mice, one-third cause recessive lethal phenotypes affecting various stages of embryonic and postnatal development. Thus, secretory-trap mutagenesis can be used for a genome-wide functional analysis of cell signaling pathways that are critical for normal mammalian development and physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicted structures of 16 new membrane or secreted proteins.
Figure 2: The secretory-trap vector induces null or near null alleles.
Figure 3: Survey of embryonic, neonatal, and postnatal phenotypes.

Similar content being viewed by others

References

  1. Gossler, A., Joyner, A.L., Rossant, J. & Skarnes, W.C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244, 463–465 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1515–1523 (1991).

    Article  Google Scholar 

  3. Skarnes, W.C., Auerbach, B.A. & Joyner, A.L. A gene trap approach in mouse embryonic stem cells: the lacZ reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. von Melchner, H. et al. Selective disruption of genes expressed in totipotent embryonal stem cells. Genes Dev. 6, 919–927 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Townley, D.J., Avery, B.J., Rosen, B. & Skarnes, W.C. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res. 7, 293–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Hicks, G.G. et al. Functional genomics in mice by tagged sequence mutagenesis. Nature Genet. 16, 338–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Zambrowicz, B.P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Wiles, M.V. et al. Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nature Genet. 24, 13–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Nolan, P.M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Hrabe de Angelis, M. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Wurst, W. et al. A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139, 889–899 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Forrester, L.M. et al. An induction gene trap screen in embryonic stem cells: identification of genes that respond to retinoic acid in vitro. Proc. Natl Acad. Sci. USA 93, 1677–1682 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skarnes, W.C., Moss, J.E., Hurtley, S.M. & Beddington, R.S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl Acad. Sci. USA 92, 6592–6596 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tate, P., Lee, M., Tweedie, S., Skarnes, W.C. & Bickmore, W.A. Capturing novel mouse genes encoding chromosomal and other nuclear proteins. J. Cell Sci. 111, 2575–2585 (1998).

    CAS  PubMed  Google Scholar 

  15. Gasca, S., Hill, D.P., Klingensmith, J. & Rossant, J. Characterization of a gene trap insertion into a novel gene, cordon-bleu, expressed in axial structures of the gastrulating mouse embryo. Dev. Genet. 17, 141–154 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Voss, A.K., Thomas, T. & Gruss, P. Compensation for a gene trap mutation in the murine microtubule-associated protein 4 locus by alternative polyadenylation and alternative splicing. Dev. Dyn. 212, 258–266 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. McClive, P. et al. Gene trap integrations expressed in the developing heart: insertion site affects splicing of the PT1-ATG vector. Dev. Dyn. 212, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Sam, M. et al. Aquarius, a novel gene isolated by gene trapping with an RNA-dependent RNA polymerase motif. Dev. Dyn. 212, 304–317 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. DeGregori, J.D. et al. A murine homolog of the yeast RNA1 gene is required for postimplantation development. Genes Dev. 8, 265–276 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, Z., Friedrich, G.A. & Soriano, P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Friedrich, G.A., Hildebrand, J.D. & Soriano, P. The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol. 192, 364–374 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  23. Leighton, P.A. et al. Defining brain wiring patterns and mechanisms through gene trapping in mice. Nature 410, 174–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Skarnes, W.C. Gene trapping methods for the identification and functional analysis of cell surface proteins. Methods Enzymol. 328, 592–615 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Paine-Saunders, S., Viviano, B.L., Zupicich, J., Skarnes, W.C. & Saunders, S. Glypican-3 controls cellular responses to BMP4 in limb patterning and skeletal development. Dev. Biol. 225, 179–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Burgess, R.W., Skarnes, W.C. & Sanes, J.R. Agrin isoforms with distinct amino termini: differential expression, localization, and function. J. Cell Biol. 151, 41–52 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H. et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25, 43–56 (2000).

    Article  PubMed  Google Scholar 

  28. Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J. & Skarnes, W.C. An LDL receptor-related protein mediates Wnt signaling in mice. Nature 407, 535–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Yeo, T.T. et al. Deficient LAR expression decreases basal forebrain cholinergic neuronal size and hippocampal cholinergic innervation. J. Neurosci. Res. 47, 348–360 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Cormick, C. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genet. 19, 158–161 (1998).

    Article  Google Scholar 

  31. Lin, X. et al. Disruption of gastrulation and heparan biosynthesis in EXT1-deficient mice. Dev. Biol. 224, 299–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Brown, M.S. & Goldstein, J.L. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc. Natl. Acad. Sci. USA 96, 11041–11048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawaguchi, T. et al. Purification and cloning of hepatocyte growth factor activator inhibitor type 2, a Kunitz-type serine protease inhibitor. J. Biol. Chem. 272, 27558–27564 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H. & Hynes, R.O. Defects in mesoderm, neural tube and vascular development in mouse embyros lacking fibronectin. Development 119, 1079–1091 (1993).

    CAS  PubMed  Google Scholar 

  35. Jones, S.N., Roe, A.E., Donehower, L.A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Ahn, J. et al. Cloning of a putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet. 11, 137–143 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Brown, S.D. et al. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem. Biophys. Res. Comm. 248, 879–888 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Cano-Gauci, D.F. et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson–Golabi–Behmel syndrome. J. Cell Biol. 146, 255–264 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Cal, S., Freije, J.M., Lopez, J.M., Takada, Y. & Lopez-Otin, C. ADAM23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol. Biol. Cell 4, 1457–1469 (2000).

    Article  Google Scholar 

  41. Shimano, H. et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. J. Clin. Invest. 100, 2115–2124 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schmidt, C. et al. Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373, 699–702 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Uehara, Y. et al. Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature 373, 702–705 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A. & Birchmeier, C. Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376, 768–771 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. The, I., Bellaiche, Y. & Perrimon, N. Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Sagane, K., Yamazaki, K., Mizui, Y. & Tanaka, I. Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23. Gene 236, 79–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Hodivala-Dilke, K.M. et al. Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaartinen, V. et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nature Genet. 11, 415–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Watanabe, H. et al. Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nature Genet. 7, 154–157 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Weinstein, M., Xu, X., Ohyama, K. & Deng, C.X. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125, 3615–3623 (1998).

    CAS  PubMed  Google Scholar 

  53. Brennan, J. & Skarnes, W.C. Gene trapping in mouse embryonic stem cells. Methods Mol. Biol. 97,123–138 (1999).

    CAS  PubMed  Google Scholar 

  54. Wilkinson, D.G. & Nieto, M.A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225, 361–367 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Parr, B.A. & McMahon, A.P. Dorsalizing signal Wnt-7a is required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Smith for providing us with the feeder-independent ES cell lines and the Oct4 probe, C. Wright for the Mox1 probe, J. Gladden for his help on the PST9 phenotype analysis, Sheila Avery for help with formatting Fig. 1, and A. Jeske and S. Elson for technical support. Funding for this project was provided by grants to W.C.S. and M.T-L. by a Program in Genomics Applications from the National Heart, Lung, and Blood Institute (NHLBI), grants to W.C.S. from the BBSRC (UK), the Chicago Community Trust, the NICHD, and the March of Dimes, and to M.T.-L. from the NIMH. The ongoing screen is also supported by a Program in Genomics Applications from the NHBLI. K.J.M. was supported by a fellowship from the Jane Coffin Childs Memorial Fund for Medical Research, O.G.K. by a fellowship from the NSF, L.V.G by a fellowship from the Helen Hay Whitney Foundation.. P.A.L. was a Howard Hughes Medical Institute Fellow, and P.T. is a Burroughs Wellcome Fellow of the Life Sciences Research Foundation. X.L. is a postdoctoral associate and M.T.L. an Investigator of the Howard Hughes Medical Institute. W.C.S. is a 1998 Searle Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Skarnes.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, K., Pinson, K., Kelly, O. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nat Genet 28, 241–249 (2001). https://doi.org/10.1038/90074

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing