Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Precise and efficient siRNA design: a key point in competent gene silencing

Abstract

RNA interference-related strategies have become appealing methods in various fields of research. Exact sequence design of these small molecules is an essential step in the silencing procedure. Numerous researchers have tried to define some algorithms in order to increase the chance of short interfering RNA's (siRNA's) success. In recent decades, online designing software has aimed at promoting the quality of siRNA designing based on the most cited algorithms. According to our previous experiments, a combination of different criteria would be helpful. That is, siRNAs suggested by a combination of tools seem to be more efficient. Furthermore, different factors such as distance of target region to transcription start site, nucleotide composition, absence of off-target effects and secondary structures in the target site and siRNA and the presence of asymmetry and energy valley within the siRNA will increase the efficiency of siRNAs. Despite application of different online tools and fulfilling the criteria, there is no guarantee for designing an effective siRNA. However, meticulous designing of siRNAs according to the suggested algorithms and scoring systems and using different siRNAs for targeting the same gene would lead to improved silencing outcome. In this review, we focus on common algorithms and online software, and introduce a new scoring system used in our experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

Ago:

Argonaute

CDS:

coding sequence

GC content:

guanidine–cytosine content

miRNA:

micro RNA

Refseq database:

Reference sequence database

RISC:

RNA-induced silencing complex

RNAi:

RNA interference

shRNA:

short hairpin RNA

siRNA:

short interfering RNA

UTR:

untranslated region.

References

  1. Matzke MA, Birchler JA . RNAi-mediated pathways in the nucleus. Nat Rev Genet 2005; 6: 24–35.

    Article  CAS  Google Scholar 

  2. Huppi K, Martin SE, Caplen NJ . Defining and assaying RNAi in mammalian cells. Mol Cell 2005; 17: 1–10.

    Article  CAS  Google Scholar 

  3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  Google Scholar 

  4. Guo S, Kemphues KJ . par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 1995; 81: 611–620.

    Article  CAS  Google Scholar 

  5. Moazeni M, Khoramizadeh MR, Kordbacheh P, Sepehrizadeh Z, Zeraati H, Noorbakhsh F et al. RNA-mediated gene silencing in Candida albicans: inhibition of hyphae formation by use of RNAi technology. Mycopathologia 2012; 174: 177–185.

    Article  CAS  Google Scholar 

  6. Fischer LT, James QY . RNAi, a new therapeutic strategy against viral infection. Cell Res 2004; 14: 460–466.

    Article  Google Scholar 

  7. de Fougerolles A, Vornlocher H-P, Maraganore J, Lieberman J . Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 2007; 6: 443–453.

    Article  CAS  Google Scholar 

  8. Yin JQ, Gao J, Shao R, Tian WN, Wang J, Wan Y . siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol 2003; 3: 194–204.

    Article  CAS  Google Scholar 

  9. Ambesajir A, Kaushik A, Kaushik JJ, Petros ST . RNA interference: a futuristic tool and its therapeutic applications. Saudi J Biol Sci 2012; 19: 395–403.

    Article  CAS  Google Scholar 

  10. Filippov V, Solovyev V, Filippova M, Gill SS . A novel type of RNase III family proteins in eukaryotes. Gene 2000; 245: 213–221.

    Article  CAS  Google Scholar 

  11. Paddison PJ . RNA interference in mammalian cell systems. Curr Top Microbiol Immunol 2008; 320: 1–19.

    CAS  PubMed  Google Scholar 

  12. Ji X . The mechanism of RNase III action: how dicer dices. Curr Top Microbiol Immunol 2008; 320: 99–116.

    CAS  PubMed  Google Scholar 

  13. Rivas FV, Tolia NH, Song J-J, Aragon JP, Liu J, Hannon GJ et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 2005; 12: 340–349.

    Article  CAS  Google Scholar 

  14. Su H, Trombly MI, Chen J, Wang X . Essential and overlapping functions for mammalian Argonautes in microRNA silencing. Genes Dev 2009; 23: 304–317.

    Article  CAS  Google Scholar 

  15. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 2003; 13: 83–105.

    Article  CAS  Google Scholar 

  16. Taxman DJ, Livingstone LR, Zhang J, Conti BJ, Iocca HA, Williams KL et al. Criteria for effective design, construction, and gene knockdown by shRNA vectors. BMC Biotechnol 2006; 6: 7.

    Article  Google Scholar 

  17. Takasaki S, Kotani S, Konagaya A . Selecting effective siRNA target sequences for mammalian genes. RNA Biol 2005; 2: 21–27.

    Article  CAS  Google Scholar 

  18. Elbashir SM, Harborth J, Weber K, Tuschl T . Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002; 26: 199–213.

    Article  CAS  Google Scholar 

  19. Teimoori-Toolabi L, Hashemi S, Azadmanesh K, Eghbalpour F, Safavifar F, Khorramizadeh MR . Silencing the wild-type and mutant K-ras increases the resistance to 5-flurouracil in HCT-116 as a colorectal cancer cell line. Anticancer Drugs 2015; 26: 187–196.

    Article  CAS  Google Scholar 

  20. Ding Y, Lawrence CE. 8 Rational design of siRNAs with the Sfold software. RNA Interference Technology. In: Krishnarao A (ed). From Basic Science to Drug Development. Cambridge University Press: UK, 2005, pp 129–138.

  21. Van Vranken D, Weiss G . Introduction to Bioorganic Chemistry and Chemical Biology. Garland Science: USA, 2012, pp 155–156.

    Book  Google Scholar 

  22. Westerhout EM, Berkhout B . A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 2007; 35: 4322–4330.

    Article  CAS  Google Scholar 

  23. Yoshinari K, Miyagishi M, Taira K . Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res 2004; 32: 691–699.

    Article  CAS  Google Scholar 

  24. Zuker M . Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31: 3406–3415.

    Article  CAS  Google Scholar 

  25. Gredell JA, Berger AK, Walton SP . Impact of target mRNA structure on siRNA silencing efficiency: a large‐scale study. Biotechnol Bioeng 2008; 100: 744–755.

    Article  CAS  Google Scholar 

  26. Tafer H, Ameres SL, Obernosterer G, Gebeshuber CA, Schroeder R, Martinez J et al. The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 2008; 26: 578–583.

    Article  CAS  Google Scholar 

  27. Yu J-Y, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci 2002; 99: 6047–6052.

    Article  CAS  Google Scholar 

  28. Paul CP, Good PD, Winer I, Engelke DR . Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002; 20: 505–508.

    Article  CAS  Google Scholar 

  29. Jacque J-M, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature 2002; 418: 435–438.

    Article  CAS  Google Scholar 

  30. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  Google Scholar 

  31. Miyagishi M, Taira K . U6 promoter–driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002; 20: 497–500.

    Article  CAS  Google Scholar 

  32. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS . Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16: 948–958.

    Article  CAS  Google Scholar 

  33. Lee NS, Dohjima T, Bauer G, Li H, Li M-J, Ehsani A et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002; 20: 500–505.

    Article  CAS  Google Scholar 

  34. Sui G, Soohoo C, Affar EB, Gay F, Shi Y, Forrester WC et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci 2002; 99: 5515–5520.

    Article  CAS  Google Scholar 

  35. Yu J-Y, Taylor J, DeRuiter SL, Vojtek AB, Turner DL . Simultaneous inhibition of GSK3α and GSK3β using hairpin siRNA expression vectors. Mol Ther 2003; 7: 228–236.

    Article  CAS  Google Scholar 

  36. Song E, Lee S-K, Wang J, Ince N, Ouyang N, Min J et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003; 9: 347–351.

    Article  CAS  Google Scholar 

  37. Naito Y, Ui-Tei K, Nishikawa T, Takebe Y, Saigo K . siVirus: web-based antiviral siRNA design software for highly divergent viral sequences. Nucleic Acids Res 2006; 34 (suppl 2): W448–W450.

    Article  CAS  Google Scholar 

  38. Kim YJ . Computational siRNA design considering alternative splicing. Methods Mol Biol 2010; 623: 81–92.

    Article  CAS  Google Scholar 

  39. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A . Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22: 326–330.

    Article  CAS  Google Scholar 

  40. Ui‐Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki‐Hamazaki H, Juni A et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 2004; 32: 936–948.

    Article  Google Scholar 

  41. Amarzguioui M, Prydz H . An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 2004; 316: 1050–1058.

    Article  CAS  Google Scholar 

  42. Jagla B, Aluner N, Kelly PD, Song D, Volchuka A, Zatorski A et al. Sequence characteristics of functional siRNAs. RNA 2005; 11: 864–872.

    Article  CAS  Google Scholar 

  43. Ishizuka A, Siomi MC, Siomi H . A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 2002; 16: 2497–2508.

    Article  CAS  Google Scholar 

  44. Khvorova A, Reynolds A, Jayasena SD . Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–216.

    Article  CAS  Google Scholar 

  45. Donis-Keller H . Site specific enzymatic cleavage of RNA. Nucleic Acids Res 1979; 7: 179–192.

    Article  CAS  Google Scholar 

  46. Hardin CC, Watson T, Corregan M, Bailey C . Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d (CGCG3GCG). Biochemistry 1992; 31: 8334.

    Article  Google Scholar 

  47. Nielsen S, Yuzenkova Y, Zenkin N . Mechanism of eukaryotic RNA polymerase III transcription termination. Science 2013; 340: 1577–1580.

    Article  CAS  Google Scholar 

  48. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T . Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001; 20: 6877–6888.

    Article  CAS  Google Scholar 

  49. Elbashir SM, Lendeckel W, Tuschl T . RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev 2001; 15: 188–200.

    Article  CAS  Google Scholar 

  50. Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K . siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res 2004; 32 (Suppl 2): W124–W129.

    Article  CAS  Google Scholar 

  51. Ui-Tei K, Naito Y, Nishi K, Juni A, Saigo K . Thermodynamic stability and Watson–Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 2008; 36: 7100–7109.

    Article  CAS  Google Scholar 

  52. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I . Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23: 457–462.

    Article  CAS  Google Scholar 

  53. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11: 263–270.

    Article  CAS  Google Scholar 

  54. Kim D-H, Behlke MA, Rose SD, Chang M-S, Choi S, Rossi JJ . Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 2005; 23: 222–226.

    Article  CAS  Google Scholar 

  55. Lan T, Putta MR, Wang D, Dai M, Yu D, Kandimalla ER et al. Synthetic oligoribonucleotides-containing secondary structures act as agonists of Toll-like receptors 7 and 8. Biochem Biophys Res Commun 2009; 386: 443–448.

    Article  CAS  Google Scholar 

  56. Gheidari F, Bakhshandeh B, Teimoori-Toolabi L, Mehrtash A, Ghadir M, Zeinali S . TCF4 silencing sensitizes the colon cancer cell line to oxaliplatin as a common chemotherapeutic drug. Anticancer Drugs 2014; 25: 908–916.

    Article  CAS  Google Scholar 

  57. Moazeni M, Khoramizadeh MR, Teimoori-Toolabi L, Noorbakhsh F, Rezaie S . The effect of EFG1 gene silencing on down-regulation of SAP5 gene, by use of RNAi technology. Acta Med Iran 2014; 52: 9–14.

    PubMed  Google Scholar 

  58. Moazeni M, Khorramizadeh MR, Teimoori-Toolabi L, Noorbakhsh F, Fallahi AA, Rezaie S . Down-regulation of the ALS3 gene as a consequent effect of RNA-mediated silencing of the EFG1 gene in Candida albicans. Iran Biomed J 2012; 16: 172.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gomes-da-Silva LC, Fernández Y, Abasolo I, Schwartz S Jr, Ramalho JS, Pedroso de Lima MC et al. Efficient intracellular delivery of siRNA with a safe multitargeted lipid-based nanoplatform. Nanomedicine (Lond) 2013; 8: 1397–1413.

    Article  CAS  Google Scholar 

  60. Kapoor M, Burgess DJ. Efficient and safe delivery of siRNA using anionic lipids: formulation optimization studies. Int J Pharm 2012; 432: 80–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Teimoori-Toolabi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhr, E., Zare, F. & Teimoori-Toolabi, L. Precise and efficient siRNA design: a key point in competent gene silencing. Cancer Gene Ther 23, 73–82 (2016). https://doi.org/10.1038/cgt.2016.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.4

This article is cited by

Search

Quick links