Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia

Abstract

Upregulation of the immunosuppressive cell surface glycoprotein, CD200, is a common feature of acute myeloid leukemia (AML) and is associated with poor patient outcome. We investigated whether CD200 overexpression on AML cells could specifically compromise patient natural killer (NK) cell anti-tumor responses. We found that CD200hi patients showed a 50% reduction in the frequency of activated NK cells (CD56dimCD16+) compared with CD200lo patients. Additionally, NK receptor expression (NKp44 and NKp46) on these cells was also significantly downregulated in CD200hi patients. To assess whether NK cell activity was directly influenced by CD200 expression, we examined the effect of ectopic expression of CD200. These assays revealed that both NK cell cytolytic activity and interferon-γ response were significantly reduced toward CD200+ leukemic targets and that these targets showed increased survival compared with CD200 cells. Similarly, NK cells isolated from AML patients were less functionally active toward CD200hi autologous blasts from both cytolytic and immunoregulatory perspectives. Finally, blocking CD200 alone was sufficient to recover a significant proportion of NK cell cytolytic activity. Together, these findings provide the first evidence that CD200 has a direct and significant suppressive influence on NK cell activity in AML patients and may contribute to the increased relapse rate in CD200+ patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barclay AN, Clark MJ, McCaughan GW . Neuronal/lymphoid membrane glycoprotein MRC OX-2 is a member of the immunoglobulin superfamily with a light-chain-like structure. Biochem Soc Symp 1986; 51: 149–157.

    CAS  PubMed  Google Scholar 

  2. Barclay AN, Wright GJ, Brooke G, Brown MH . CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 2002; 23: 285–290.

    Article  CAS  PubMed  Google Scholar 

  3. Wright GJ, Puklavec MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000; 13: 233–242.

    Article  CAS  PubMed  Google Scholar 

  4. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290: 1768–1771.

    Article  CAS  PubMed  Google Scholar 

  5. Gorczynski RM, Lee L, Boudakov I . Augmented induction of CD4+CD25+ Treg using monoclonal antibodies to CD200R. Transplantation 2005; 79: 488–491.

    Article  CAS  PubMed  Google Scholar 

  6. Gorczynski L, Chen Z, Hu J, Kai Y, Lei J, Ramakrishna V et al. Evidence that an OX-2-positive cell can inhibit the stimulation of type 1 cytokine production by bone marrow-derived B7-1 (and B7-2)-positive dendritic cells. J Immunol 1999; 162: 774–781.

    CAS  PubMed  Google Scholar 

  7. Moreaux J, Veyrune JL, Reme T, De VJ, Klein B . CD200: a putative therapeutic target in cancer. Biochem Biophys Res Commun 2008; 366: 117–122.

    Article  CAS  PubMed  Google Scholar 

  8. Siva A, Xin H, Qin F, Oltean D, Bowdish KS, Kretz-Rommel A . Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol Immunother 2008; 57: 987–996.

    Article  CAS  PubMed  Google Scholar 

  9. Tonks A, Pearn L, Musson M, Gilkes A, Mills KI, Burnett AK et al. Transcriptional dysregulation mediated by RUNX1-RUNX1T1 in normal human progenitor cells and in acute myeloid leukaemia. Leukemia 2007; 21: 2495–2505.

    Article  CAS  PubMed  Google Scholar 

  10. Wong KK, Khatri I, Shaha S, Spaner DE, Gorczynski RM . The role of CD200 in immunity to B cell lymphoma. J Leukoc Biol 2010; 88: 361–372.

    Article  CAS  PubMed  Google Scholar 

  11. Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy.J Immunol 2007; 178: 5595–5605.

    Article  CAS  PubMed  Google Scholar 

  12. Brunetti L, Di NR, Abate G, Gorrese M, Gravetti A, Raia M et al. CD200/OX2, a cell surface molecule with immuno-regulatory function, is consistently expressed on hairy cell leukaemia neoplastic cells. Br J Haematol 2009; 145: 665–667.

    Article  CAS  PubMed  Google Scholar 

  13. Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E et al. CD200 is a new prognostic factor in multiple myeloma. Blood 2006; 108: 4194–4197.

    Article  CAS  PubMed  Google Scholar 

  14. Tonks A, Hills R, White P, Rosie B, Mills KI, Burnett AK et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 2007; 21: 566–568.

    Article  CAS  PubMed  Google Scholar 

  15. Kawasaki BT, Mistree T, Hurt EM, Kalathur M, Farrar WL . Co-expression of the toleragenic glycoprotein, CD200, with markers for cancer stem cells. Biochem Biophys Res Commun 2007; 364: 778–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawasaki BT, Farrar WL . Cancer stem cells, CD200 and immunoevasion. Trends Immunol 2008; 29: 464–468.

    Article  CAS  PubMed  Google Scholar 

  17. Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J . Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin Exp Immunol 2001; 126: 220–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorczynski RM . Transplant tolerance modifying antibody to CD200 receptor, but not CD200, alters cytokine production profile from stimulated macrophages. Eur J Immunol 2001; 31: 2331–2337.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Stanford M, Liu J, Barrett C, Jiang L, Barclay AN et al. Inhibition of macrophage activation by the myxoma virus M141 protein (vCD200). J Virol 2009; 83: 9602–9607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooper MA, Caligiuri MA . Immunologic manipulation in AML: from bench to bedside. Leukemia 2002; 16: 736–737.

    Article  CAS  PubMed  Google Scholar 

  21. Guinn BA, Mohamedali A, Thomas NS, Mills KI . Immunotherapy of myeloid leukaemia. Cancer Immunol Immunother 2007; 56: 943–957.

    Article  PubMed  Google Scholar 

  22. Barrett AJ, Le BK . Immunotherapy prospects for acute myeloid leukaemia. Clin Exp Immunol 2010; 161: 223–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Warren HS, Smyth MJ . NK cells and apoptosis. Immunol Cell Biol 1999; 77: 64–75.

    Article  CAS  PubMed  Google Scholar 

  24. Zwirner NW, Domaica CI . Cytokine regulation of natural killer cell effector functions. Biofactors 2010; 36: 274–288.

    Article  CAS  PubMed  Google Scholar 

  25. Moretta L, Biassoni R, Bottino C, Cantoni C, Pende D, Mingari MC et al. Human NK cells and their receptors. Microbes Infect 2002; 4: 1539–1544.

    Article  CAS  PubMed  Google Scholar 

  26. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 2009; 119: 1251–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hecht ML, Rosental B, Horlacher T, Hershkovitz O, De Paz JL, Noti C et al. Natural cytotoxicity receptors NKp30, NKp44 and NKp46 bind to different heparan sulfate/heparin sequences. J Proteome Res 2009; 8: 712–720.

    Article  CAS  PubMed  Google Scholar 

  28. Lowdell MW, Craston R, Samuel D, Wood ME, O’Neill E, Saha V et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells. Br J Haematol 2002; 117: 821–827.

    Article  CAS  PubMed  Google Scholar 

  29. Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia. Blood 2002; 99: 3661–3667.

    Article  CAS  PubMed  Google Scholar 

  30. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J . CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 2009; 126: 458–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lennon G, Auffray C, Polymeropoulos M, Soares MB . The I.M.A.G.E. consortium: an integrated molecular analysis of genomes and their expression. Genomics 1996; 33: 151–152.

    Article  CAS  PubMed  Google Scholar 

  32. Grignani F, Kinsella T, Mencarelli A, Valtieri M, Riganelli D, Grignani F et al. High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Res 1998; 58: 14–19.

    CAS  PubMed  Google Scholar 

  33. Derby E, Reddy V, Baseler M, Malyguine A . Flow cytometric assay for the simultaneous analysis of cell-mediated cytotoxicity and effector cell phenotype. Biotechniques 2001; 31: 660, 664–665.

    Article  CAS  PubMed  Google Scholar 

  34. Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 2007; 109: 323–330.

    Article  CAS  PubMed  Google Scholar 

  35. Waldhauer I, Steinle A . NK cells and cancer immunosurveillance. Oncogene 2008; 27: 5932–5943.

    Article  CAS  PubMed  Google Scholar 

  36. Nowbakht P, Ionescu MC, Rohner A, Kalberer CP, Rossy E, Mori L et al. Ligands for natural killer cell-activating receptors are expressed upon the maturation of normal myelomonocytic cells but at low levels in acute myeloid leukemias. Blood 2005; 105: 3615–3622.

    Article  CAS  PubMed  Google Scholar 

  37. Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A . Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in NOD/SCID mice. Leukemia 2005; 19: 2215–2222.

    Article  CAS  PubMed  Google Scholar 

  38. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 22: 633–640.

    Article  CAS  PubMed  Google Scholar 

  39. Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, Vivier E et al. Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 2005; 106: 1711–1717.

    Article  CAS  PubMed  Google Scholar 

  40. Alter G, Malenfant JM, Altfeld M . CD107a as a functional marker for the identification of natural killer cell activity. J Immunol Methods 2004; 294: 15–22.

    Article  CAS  PubMed  Google Scholar 

  41. Penack O, Gentilini C, Fischer L, Asemissen AM, Scheibenbogen C, Thiel E et al. CD56dimCD16neg cells are responsible for natural cytotoxicity against tumor targets. Leukemia 2005; 19: 835–840.

    Article  CAS  PubMed  Google Scholar 

  42. Zimmer J, Andres E, Hentges F . NK cell subsets and CD107a mobilization assay. Leukemia 2005; 19: 1849–1851.

    Article  CAS  PubMed  Google Scholar 

  43. Derby EG, Reddy V, Nelson EL, Kopp WC, Baseler MW, Dawson JR et al. Correlation of human CD56+ cell cytotoxicity and IFN-gamma production. Cytokine 2001; 13: 85–90.

    Article  CAS  PubMed  Google Scholar 

  44. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001; 97: 3146–3151.

    Article  CAS  PubMed  Google Scholar 

  45. Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS . Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 2008; 180: 699–705.

    Article  CAS  PubMed  Google Scholar 

  46. Pallasch CP, Ulbrich S, Brinker R, Hallek M, Uger RA, Wendtner CM . Disruption of T cell suppression in chronic lymphocytic leukemia by CD200 blockade. Leuk Res 2009; 33: 460–464.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by Leukemia and Lymphoma Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Darley.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coles, S., Wang, E., Man, S. et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia. Leukemia 25, 792–799 (2011). https://doi.org/10.1038/leu.2011.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.1

Keywords

This article is cited by

Search

Quick links