Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disease proteomics

Abstract

The sequencing of the human genome and that of numerous pathogens has opened the door for proteomics by providing a sequence-based framework for mining proteomes. As a result, there is intense interest in applying proteomics to foster a better understanding of disease processes, develop new biomarkers for diagnosis and early detection of disease, and accelerate drug development. This interest creates numerous opportunities as well as challenges to meet the needs for high sensitivity and high throughput required for disease-related investigations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Affinity capture of surface-membrane proteins.
Figure 2: Imaging mass spectrometry.
Figure 3: Activity-based protein profiling.
Figure 4: Chromophore-assisted laser inactivation.

Similar content being viewed by others

References

  1. Petricoin, E. F., Zoon, K. C., Kohn, E. C., Barrett, J. C. & Liotta, L. A. Clinical proteomics: translating benchside promise into bedside reality. Nature Rev. Drug Discov. 1, 683–695 (2002).

    Article  CAS  Google Scholar 

  2. Hanash, S. 2-D or not 2-D—is there a future for 2-D gels in proteomics? Insights from York proteomic meeting. Proteomics 1, 635–637 (2001).

    CAS  PubMed  Google Scholar 

  3. Hanash, S. M., Madoz-Gurpide, J. & Misek, D. E. Identification of novel targets for cancer therapy using expression proteomics. Leukemia 16, 478–485 (2002).

    Article  CAS  Google Scholar 

  4. Van Eyk, J. E. Proteomics: unraveling the complexity of heart disease and striving to change cardiology. Curr. Opin. Mol. Therapeut. 3, 546–553 (2001).

    CAS  Google Scholar 

  5. Li, X. P. et al. A two-dimensional gel electrophoresis database of rat heart protein. Electrophoresis 20, 891–897 (1999).

    Article  CAS  Google Scholar 

  6. Evans, G., Wheeler, C. H., Corbett, J. M. & Dunn, M. J. Construction of HSC-2D PAGE: a two-dimensional gel electrophoresis database of heart proteins. Electrophoresis 18, 471–479 (1997).

    Article  CAS  Google Scholar 

  7. van Der Velden, J. et al. Effects of calcium, inorganic, phosphate, and pH on isometric force in single skinned cardiomyocytes from donor and failing human hearts. Circulation 104, 1140–1146 (2001).

    Article  CAS  Google Scholar 

  8. Arrell, D. K., Neverova, I., Fraser, H., Marbán, E. & Van Eyk, J. E. Proteomic analysis of pharmacologically preconditioned cardiomyocytes reveals novel phosphorylation of myosin light chain 1. Circ. Res. 89, 480–487 (2001).

    Article  CAS  Google Scholar 

  9. Ping, P., Zhang, J., Pierce, W. M. & Bolli, R. Functional proteomic analysis of protein kinase Cɛ signaling complexes in the normal heart and during cardioprotection. Circ. Res. 88, 59–62 (2001).

    Article  CAS  Google Scholar 

  10. Heinke, M. Y. et al. Protein changes observed in pacing-induced heart failure using two-dimensional electrophoresis. Electrophoresis 19, 2021–2030 (1998).

    Article  CAS  Google Scholar 

  11. Westbrook, J. A., Yan, J. X., Wait, R., Welson, S. Y. & Dunn, M. J. Zooming-in on the proteome: very narrow-range immobilized pH gradients reveal more protein species and isoforms. Electrophoresis 22, 2865–2871 (2001).

    Article  CAS  Google Scholar 

  12. Hoving, S. et al. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2, 127–134 (2002).

    Article  CAS  Google Scholar 

  13. Langen, H. et al. Two-dimensional map of the proteome of Haemophilus influenzae. Electrophoresis 21, 411–429 (2000).

    Article  CAS  Google Scholar 

  14. Zuo, X. & Speicher, D. W. Comprehensive analysis of complex proteomes using microscale solution isoelectrofocusing prior to narrow pH range two-dimensional electrophoresis. Proteomics 2, 58–68 (2002).

    Article  CAS  Google Scholar 

  15. Patton, W. F. Detection technologies in proteome analysis. J. Chromatogr. B 771, 3–31 (2002).

    Article  CAS  Google Scholar 

  16. Zhou, G. et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol. Cell. Proteomics 1, 117–124 (2001).

    Article  Google Scholar 

  17. Gagnon, E. et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110, 119–131 (2002).

    Article  CAS  Google Scholar 

  18. Sabarth, N. et al. Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. J. Biol. Chem. 277, 27896–27902 (2002).

    Article  CAS  Google Scholar 

  19. Shin, B. K. et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. DOI: 10.1074/jbc.M210455200 (2002).

  20. Brivio, M. et al. Integrated microfluidic system enabling (bio)chemical reactions with on-line MALDI-TOF mass spectrometry. Anal. Chem. 74, 3972–3976 (2002).

    Article  CAS  Google Scholar 

  21. Stoeckli, M., Chaurand, P., Hallahan, D. E. & Caprioli, R. M. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nature Med. 7, 493–496 (2001).

    Article  CAS  Google Scholar 

  22. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  ADS  CAS  Google Scholar 

  24. Brenton, J. D., Aparicio, S. A. & Caldas, C. Molecular profiling of breast cancer: portraits but not physiognomy. Breast Cancer Res. 3, 77–80 (2001).

    Article  CAS  Google Scholar 

  25. Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61, 5979–5984 (2001).

    CAS  PubMed  Google Scholar 

  26. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  Google Scholar 

  27. Chen, G. et al. Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin. Cancer Res. 8, 2290–2305 (2002).

    Google Scholar 

  28. Opinion. Microarray standards at last. Nature 419, 323 (2002).

  29. Pellois, J. P. et al. Individually addressable parallel peptide synthesis on microchips. Nature Biotechnol. 20, 922–926 (2002).

    Article  CAS  Google Scholar 

  30. Knezevic, V. et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1, 1271–1278 (2001).

    Article  CAS  Google Scholar 

  31. Paweletz, C. P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

    Article  CAS  Google Scholar 

  32. Robinson, W. H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nature Med. 8, 295–301 (2002).

    Article  CAS  Google Scholar 

  33. Madoz-Gurpide, J., Wang, H., Misek, D. E., Brichory, F. & Hanash, S. M. Protein based microarrays: a tool for probing the proteome of cancer cells and tissues. Proteomics 1, 1279–1287 (2001).

    Article  CAS  Google Scholar 

  34. Zhang, L. et al. Contribution of human α-defensin 1, 2 and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298, 995–1000 (2002).

    Article  ADS  CAS  Google Scholar 

  35. Hanash, S. Harnessing immunity for cancer marker discovery. Nature Biotechnol. 21, 37–38 (2003).

    Article  CAS  Google Scholar 

  36. Stockert, E. et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med. 187, 1349–1354 (1998).

    Article  CAS  Google Scholar 

  37. Gourevitch, M. M. et al. Polymorphic epithelial mucin (MUC-1)-containing circulating immune complexes in carcinoma patients. Br. J. Cancer 72, 934–938 (1995).

    Article  CAS  Google Scholar 

  38. Gure, A. O. et al. Human lung cancer antigens recognized by autologous antibodies: definition of a novel cDNA derived from the tumor suppressor gene locus on chromosome 3p21.3. Cancer Res. 58, 1034–1341 (1998).

    CAS  PubMed  Google Scholar 

  39. Yamamoto, A., Shimizu, E., Ogura, T. & Sone, S. Detection of auto-antibodies against L-myc oncogene products in sera from lung cancer patients. Int. J. Cancer 22, 283–289 (1996).

    Article  Google Scholar 

  40. Soussi, T. The humoral response to the tumor-suppressor gene product p53 in human cancer: implications for diagnosis and therapy. Immunol. Today 17, 354–356 (1996).

    Article  CAS  Google Scholar 

  41. Old, L. J. & Chen, Y. T. New paths in human cancer serology. J. Exp. Med. 187, 1163–1167 (1998).

    Article  CAS  Google Scholar 

  42. Mintz, P. J. et al. Fingerprinting the circulating repertoire cancer patients. Nature Biotechnol. 21, 57–63 (2003).

    Article  CAS  Google Scholar 

  43. Le Naour, F. Contribution of proteomics to tumor immunology. Proteomics 1, 1295–1302 (2001).

    Article  CAS  Google Scholar 

  44. Brichory, F. M. et al. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Proc. Natl Acad. Sci. USA 98, 9824–9829 (2001).

    Article  ADS  CAS  Google Scholar 

  45. Vondriska, T. M. & Ping, P. Functional proteomics to study protection of the ischaemic myocardium. Expert Opin. Therapeut. Targets 6, 563–570 (2002).

    Article  CAS  Google Scholar 

  46. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    Article  CAS  Google Scholar 

  47. Jessani, N., Liu, Y., Humphrey, M. & Cravatt, B. F. Enzyme activity profiles of the secreted and membrane proteome that depict cancer cell invasiveness. Proc. Natl Acad. Sci. USA 99, 10335–10340 (2002).

    Article  ADS  CAS  Google Scholar 

  48. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  49. Rubenwolf, S. et al. Functional proteomics using chromophore-assisted laser inactivation. Proteomics. Proteomics 2, 241–246 (2002).

    Article  CAS  Google Scholar 

  50. VanBogelen, R. A., Schiller, E. E., Thomas, R. D. & Neidhardt, F. C. Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20, 2149–2159 (1999).

    Article  CAS  Google Scholar 

  51. Lasonder, E. et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419, 537–542 (2002).

    Article  ADS  CAS  Google Scholar 

  52. Florens, L. et al. A proteomic view of the Plasmodium falciparum life cycle. Nature 419, 520–526 (2002).

    Article  ADS  CAS  Google Scholar 

  53. Nilsson, C. L. Bacterial proteomics and vaccine development. Am. J. Pharmacogenomics 2, 59–65 (2002).

    Article  CAS  Google Scholar 

  54. Eymann, C., Homuth, G., Scharf, C. & Hecker, M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J. Bacteriol. 184, 2500–2520 (2002).

    Article  CAS  Google Scholar 

  55. Haas, G. et al. Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2, 313–324 (2002).

    Article  CAS  Google Scholar 

  56. Reid, S. D. et al. Postgenomic analysis of four novel antigens of group a streptococcus: growth phase-dependent gene transcription and human serologic response. J. Bacteriol. 184, 6316–6324 (2002).

    Article  CAS  Google Scholar 

  57. Antelmann, H., Yamamoto, H., Sekiguchi, J. & Hecker, M. Stabilization of cell wall proteins in Bacillus subtilis: a proteomic approach. Proteomics 2, 591–602 (2002).

    Article  CAS  Google Scholar 

  58. Lewis, T. S. et al. Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Mol. Cell 6, 1343–1354 (2000).

    Article  CAS  Google Scholar 

  59. McKerrow, J. H. et al. A functional proteomics screen of proteases in colorectal carcinoma. Mol. Med. 6, 450–460 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank P. Chaurand, R. Caprioli, G. Omenn, B. Cravatt, N. Jessani, R. Kuick, L. Ilag, E. Gulari for their insightful comments, stimulating discussions and other contributions to the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Hanash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanash, S. Disease proteomics. Nature 422, 226–232 (2003). https://doi.org/10.1038/nature01514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01514

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing