Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proton-sensing G-protein-coupled receptors

Abstract

Blood pH is maintained in a narrow range around pH 7.4 mainly through regulation of respiration and renal acid extrusion1,2. The molecular mechanisms involved in pH homeostasis are not completely understood. Here we show that ovarian cancer G-protein-coupled receptor 1 (OGR1), previously described as a receptor for sphingosylphosphorylcholine3, acts as a proton-sensing receptor stimulating inositol phosphate formation. The receptor is inactive at pH 7.8, and fully activated at pH 6.8—site-directed mutagenesis shows that histidines at the extracellular surface are involved in pH sensing. We find that GPR4, a close relative of OGR1, also responds to pH changes, but elicits cyclic AMP formation. It is known that the skeleton participates in pH homeostasis as a buffering organ, and that osteoblasts respond to pH changes in the physiological range4, but the pH-sensing mechanism operating in these cells was hitherto not known. We detect expression of OGR1 in osteosarcoma cells and primary human osteoblast precursors, and show that these cells exhibit strong pH-dependent inositol phosphate formation. Immunohistochemistry on rat tissue sections confirms the presence of OGR1 in osteoblasts and osteocytes. We propose that OGR1 and GPR4 are proton-sensing receptors involved in pH homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IP formation experiments.
Figure 2: Sequence alignment and 3D model for OGR1.
Figure 3: pH-dependent activation of wild-type and mutated OGR1 receptor constructs following transient transfection into HEK293 cells.
Figure 4: cAMP formation experiments.
Figure 5: OGR1 in bone.

Similar content being viewed by others

References

  1. Feldman, J. L., Mitchell, G. S. & Nattie, E. E. Breathing: rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci. 26, 239–266 (2003)

    Article  CAS  Google Scholar 

  2. Swenson, E. R. Metabolic acidosis. Respir. Care 46, 342–353 (2001)

    CAS  PubMed  Google Scholar 

  3. Xu, Y. et al. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nature Cell Biol. 2, 261–267 (2000)

    Article  CAS  Google Scholar 

  4. Krieger, N. S., Parker, W. R., Alexander, K. M. & Bushinsky, D. A. Prostaglandins regulate acid-induced cell-mediated bone resorption. Am. J. Physiol. Renal Physiol. 279, F1077–F1082 (2000)

    Article  CAS  Google Scholar 

  5. Berridge, M. J., Downes, C. P. & Hanley, M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595 (1982)

    Article  CAS  Google Scholar 

  6. Berridge, M. J. & Irvine, R. F. Inositol phosphates and cell signalling. Nature 341, 197–205 (1989)

    Article  ADS  CAS  Google Scholar 

  7. Paris, S. & Pouyssegur, J. Pertussis toxin inhibits thrombin-induced activation of phosphoinositide hydrolysis and Na+/H+ exchange in hamster fibroblasts. EMBO J. 5, 55–60 (1986)

    Article  CAS  Google Scholar 

  8. Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991)

    Article  ADS  CAS  Google Scholar 

  9. Smith, G. D. et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418, 186–190 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Elling, C. E., Nielsen, S. M. & Schwartz, T. W. Conversion of antagonist-binding site to metal-ion site in the tachykinin NK-1 receptor. Nature 374, 74–77 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P. & Bourne, H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350 (1996)

    Article  ADS  CAS  Google Scholar 

  12. Zhu, K. et al. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem. 276, 41325–41335 (2001)

    Article  CAS  Google Scholar 

  13. Brechter, A. B. & Lerner, U. H. Characterization of bradykinin receptors in a human osteoblastic cell line. Regul. Pept. 103, 39–51 (2002)

    Article  CAS  Google Scholar 

  14. Bushinsky, D. A. Acid-base imbalance and the skeleton. Eur. J. Nutr. 40, 238–244 (2001)

    Article  CAS  Google Scholar 

  15. Goldhaber, P. & Rabadjija, L. H+ stimulation of cell-mediated bone resorption in tissue culture. Am. J. Physiol. 253, E90–E98 (1987)

    Article  CAS  Google Scholar 

  16. Meghji, S., Morrison, M. S., Henderson, B. & Arnett, T. R. pH dependence of bone resorption: Mouse calvarial osteoclasts are activated by acidosis. Am. J. Physiol. Endocrinol. Metab. 280, E112–E119 (2001)

    Article  CAS  Google Scholar 

  17. Gijon, M. A. & Leslie, C. C. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J. Leucoc. Biol. 65, 330–336 (1999)

    Article  CAS  Google Scholar 

  18. Waldmann, R. et al. H+-gated cation channels. Ann. NY Acad. Sci. 868, 67–76 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000)

    Article  ADS  CAS  Google Scholar 

  20. An, S., Tsai, C. & Goetzl, E. J. Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett. 375, 121–124 (1995)

    Article  CAS  Google Scholar 

  21. Ishizaka, H., Gudi, S. R., Frangos, J. A. & Kuo, L. Coronary arteriolar dilation to acidosis: role of ATP-sensitive potassium channels and pertussis toxin-sensitive G proteins. Circulation 99, 558–563 (1999)

    Article  CAS  Google Scholar 

  22. Reeh, P. W. & Steen, K. H. Tissue acidosis in nociception and pain. Prog. Brain Res. 113, 143–151 (1996)

    Article  CAS  Google Scholar 

  23. Heming, T. A. et al. Effects of extracellular pH on tumour necrosis factor-α production by resident alveolar macrophages. Clin. Sci. (Lond.) 101, 267–274 (2001)

    Article  CAS  Google Scholar 

  24. Sottile, V., Halleux, C., Bassilana, F., Keller, H. & Seuwen, K. Stem cell characteristics of human trabecular bone-derived cells. Bone 30, 699–704 (2002)

    Article  CAS  Google Scholar 

  25. Seuwen, K., Lagarde, A. & Pouyssegur, J. Deregulation of hamster fibroblast proliferation by mutated ras oncogenes is not mediated by constitutive activation of phosphoinositide-specific phospholipase C. EMBO J. 7, 161–168 (1988)

    Article  CAS  Google Scholar 

  26. Salomon, Y. Adenylate cyclase assay. Adv. Cycl. Nucleot. Res. 10, 35–55 (1979)

    CAS  Google Scholar 

  27. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Bower, M. J., Cohen, F. E. & Dunbrack, R. L. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: A new homology modeling tool. J. Mol. Biol. 267, 1268–1282 (1997)

    Article  CAS  Google Scholar 

  29. Cornell, W. D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Wilmering-Wetter and H. Anklin for assistance in cell culture, IP formation and intracellular calcium assays, R. Brearley and M. Schäublin for support in molecular biology, and A Rebmann for IHC analysis. We also thank R. Bouhelal and I. Vranesic for advice concerning the fluorescence imaging plate reader, and J. Mosbacher for help with confocal microscopy.Authors' contributions The experiments shown in Figs 1, 3, 4, 5 were carried out by M.G.L., M.V., D.G. and K.S. J.A.G. performed the IHC on tissue sections. C.E.J. cloned GPR4 and performed expression profiling experiments. U.J. and H.H. participated in the cloning of OGR1, expression profiling, and experiments with lipid agonists. R.W. carried out receptor modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Seuwen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludwig, MG., Vanek, M., Guerini, D. et al. Proton-sensing G-protein-coupled receptors. Nature 425, 93–98 (2003). https://doi.org/10.1038/nature01905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01905

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing