Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vitro differentiation of transplantable neural precursors from human embryonic stem cells

Abstract

The remarkable developmental potential and replicative capacity of human embryonic stem (ES) cells promise an almost unlimited supply of specific cell types for transplantation therapies. Here we describe the in vitro differentiation, enrichment and transplantation of neural precursor cells from human ES cells. Upon aggregation to embryoid bodies, differentiating ES cells formed large numbers of neural tube–like structures in the presence of fibroblast growth factor 2 (FGF-2). Neural precursors within these formations were isolated by selective enzymatic digestion and further purified on the basis of differential adhesion. Following withdrawal of FGF-2, they differentiated into neurons, astrocytes and oligodendrocytes. After transplantation into the neonatal mouse brain, human ES cell–derived neural precursors were incorporated into a variety of brain regions, where they differentiated into both neurons and astrocytes. No teratoma formation was observed in the transplant recipients. These results depict human ES cells as a source of transplantable neural precursors for possible nervous system repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Reubinoff, B.E., Pera, M.F., Fong, C.-F., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Thomson, J.A. & Odorico, J.S. Human embryonic stem cell and embryonic germ cell lines. Trends Biotechnol. 18, 53–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Wiles, M.V. & Keller, G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267 (1991).

    CAS  PubMed  Google Scholar 

  • Klug, M.G., Soonpaa, M.H., Koh, G.Y. & Field, L.J. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria, B. et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49, 157–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Bain, G., Kitchens, D., Yao, M., Huettner, J.E. & Gottlieb, D.I. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M. & McKay, R.D.G. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Mujtaba, T. et al. Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Brustle, O. et al. Embryonic stem cell–derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Brustle, O. et al. In vitro–generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. USA 94, 14809–14814 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, J.W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S.-C., Ge, B. & Duncan, I.D. Tracing human oligodendroglial development in vitro. J. Neurosci. Res. 59, 421–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S.-C., Ge, B. & Duncan, I.D. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc. Natl. Acad. Sci. USA 96, 4089–4094 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, Y. et al. Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev. Neurosci. 22, 139–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Svendsen, C.N., Clarke, D.J., Rosser, A.E. & Dunnett, S.B. Survival and differentiation of rat and human epidermal growth factor–responsive precursor cells following grafting into the lesioned adult central nervous system. Exp. Neurol. 137, 376–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, M.K. et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp. Neurol. 158, 265–278 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Vescovi, A.L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Flax, J.D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons and express foreign genes. Nat. Biotechnol. 16, 1033–1039 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Svendsen, C.N., Caldwell, M.A. & Ostenfeld, O. Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 9, 499–513 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Fricker, R.A. et al. Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brustle, O. et al. Chimeric brains generated by intraventricular transplantation with human brain cells into embryonic rats. Nat. Biotechnol. 16, 1040–1044 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Kalyani, A.D., Hobson, K. & Rao, M.S. Neuroepithelial stem cells from the embryonic spinal cord: isolation, characterization and clonal analysis. Dev. Biol. 186, 202–223 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Tropepe, V. et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the technical support provided by C. Daigh, A. Graf, J. Dean and Z. Chang and for helpful comments from Clive Svendsen. This study was supported by the Myelin Project (Washington, DC) and the Consolidated Anti-Aging Foundation (Naples, FL).

Author information

Authors and Affiliations

Authors

Additional information

The online version of the original article can be found at 10.1038/nbt1201-1117

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SC., Wernig, M., Duncan, I. et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19, 1129–1133 (2001). https://doi.org/10.1038/nbt1201-1129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1201-1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing