Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A combinatorial library of lipid-like materials for delivery of RNAi therapeutics

Abstract

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2′-O-methyl (2′-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of lipidoids.
Figure 2: In vitro screening of lipidoids for siRNA delivery.
Figure 3: In vivo delivery of siRNA to liver in rodents.
Figure 4: In vivo delivery of siRNA to lung and peritoneal macrophages and delivery of anti-miRs to liver.
Figure 5: In vivo delivery in primates.

Similar content being viewed by others

References

  1. de Fougerolles, A., Vornlocher, H.P., Maraganore, J. & Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nat. Rev. Drug Discov. 6, 443–453 (2007).

    Article  CAS  Google Scholar 

  2. Novina, C.D. & Sharp, P.A. The RNAi revolution. Nature 430, 161–164 (2004).

    Article  CAS  Google Scholar 

  3. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  Google Scholar 

  4. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  5. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11, 50–55 (2005).

    Article  CAS  Google Scholar 

  6. Li, B.J. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 11, 944–951 (2005).

    Article  CAS  Google Scholar 

  7. Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  8. Zimmermann, T.S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  Google Scholar 

  9. Heidel, J.D. et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc. Natl. Acad. Sci. USA 104, 5715–5721 (2007).

    Article  CAS  Google Scholar 

  10. Chu, T.C., Twu, K.Y., Ellington, A.D. & Levy, M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 34, e73 (2006).

    Article  Google Scholar 

  11. McNamara, J.O., II et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat. Biotechnol. 24, 1005–1015 (2006).

    Article  CAS  Google Scholar 

  12. Muratovska, A. & Eccles, M.R. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett. 558, 63–68 (2004).

    Article  CAS  Google Scholar 

  13. Pal, A. et al. Systemic delivery of RafsiRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int. J. Oncol. 26, 1087–1091 (2005).

    CAS  PubMed  Google Scholar 

  14. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006).

    Article  CAS  Google Scholar 

  15. Sorensen, D.R., Leirdal, M. & Sioud, M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J. Mol. Biol. 327, 761–766 (2003).

    Article  CAS  Google Scholar 

  16. Zhang, Y. et al. Engineering mucosal RNA interference in vivo. Mol. Ther. 14, 336–342 (2006).

    Article  CAS  Google Scholar 

  17. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  Google Scholar 

  18. Howard, K.A. et al. RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14, 476–484 (2006).

    Article  CAS  Google Scholar 

  19. Takei, Y., Kadomatsu, K., Yuzawa, Y., Matsuo, S. & Muramatsu, T. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res. 64, 3365–3370 (2004).

    Article  CAS  Google Scholar 

  20. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F. & Aigner, A. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12, 461–466 (2005).

    Article  CAS  Google Scholar 

  21. Davidson, T.J. et al. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J. Neurosci. 24, 10040–10046 (2004).

    Article  CAS  Google Scholar 

  22. Kim, W.J. et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol. Ther. 14, 343–350 (2006).

    Article  Google Scholar 

  23. Simeoni, F., Morris, M.C., Heitz, F. & Divita, G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 31, 2717–2724 (2003).

    Article  CAS  Google Scholar 

  24. Peer, D., Zhu, P., Carman, C.V., Lieberman, J. & Shimaoka, M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. USA 104, 4095–4100 (2007).

    Article  CAS  Google Scholar 

  25. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    Article  CAS  Google Scholar 

  26. Miller, A. Cationic Liposomes for Gene Therapy. Angew. Chem. Int. Ed. 37, 1769–1785 (1998).

    CAS  Google Scholar 

  27. Griesenbach, U. et al. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo. Respir. Res. 7, 26 (2006).

    Article  Google Scholar 

  28. Amarzguioui, M. et al. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat. Protocols 1, 508–517 (2006).

    Article  CAS  Google Scholar 

  29. Anderson, D.G., Akinc, A., Hossain, N. & Langer, R. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol. Ther. 11, 426–434 (2005).

    Article  CAS  Google Scholar 

  30. Cunnick, J., Kaur, P., Cho, Y., Groffen, J. & Heisterkamp, N. Use of bone marrow-derived macrophages to model murine innate immune responses. J. Immunol. Methods 311, 96–105 (2006).

    Article  CAS  Google Scholar 

  31. Constien, R. et al. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30, 36–44 (2001).

    Article  CAS  Google Scholar 

  32. Maurer, N. et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J. 80, 2310–2326 (2001).

    Article  CAS  Google Scholar 

  33. Semple, S.C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510, 152–166 (2001).

    Article  CAS  Google Scholar 

  34. Heyes, J., Palmer, L., Bremner, K. & Maclachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Release 107, 276–287 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank funding by the National Institutes of Health grant R01 EB00244. A.Z. would like to thank the Swiss National Science Foundation for his postdoctoral fellowship. We would also like to thank John Maraganore for helpful comments and Maryellen Duckman for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G Anderson.

Ethics declarations

Competing interests

A.A., R.A., A.B., T.B., A.d.F., J.R.D., K.N.J., M.J., V.K., M.M., L.N., J.Q., T.R., D.R., K.G.R., D.W.Y.S., I.T. and S.Z. are current employees of Alnylam Pharmaceuticals. R.C., M.J., J.S. and H.-P.V. are former employees of Alnylam Pharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Tables 1–3, Methods (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinc, A., Zumbuehl, A., Goldberg, M. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26, 561–569 (2008). https://doi.org/10.1038/nbt1402

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1402

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing