Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptobrevin is essential for fast synaptic-vesicle endocytosis

Abstract

Synaptobrevin-2 (VAMP-2), the major SNARE protein of synaptic vesicles, is required for fast calcium-triggered synaptic-vesicle exocytosis. Here we show that synaptobrevin-2 is also essential for fast synaptic-vesicle endocytosis. We demonstrate that after depletion of the readily releasable vesicle pool, replenishment of the pool is delayed by knockout of synaptobrevin. This delay was not from a loss of vesicles, because the total number of pre-synaptic vesicles, docked vesicles and actively recycling vesicles was unaffected. However, altered shape and size of the vesicles in synaptobrevin-deficient synapses suggests a defect in endocytosis. Consistent with such a defect, the stimulus-dependent endocytosis of horseradish peroxidase and fluorescent FM1-43 were delayed, indicating that fast vesicle endocytosis may normally be nucleated by a SNARE-dependent coat. Thus, synaptobrevin is essential for two fast synapse-specific membrane trafficking reactions: fast exocytosis for neurotransmitter release and fast endocytosis that mediates rapid reuse of synaptic vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delayed replenishment of synaptic readily releasable pool in synaptobrevin-2 knock-out (Syb2-KO) synapses.
Figure 2: Frequency-dependent facilitation in synaptobrevin-2 knock-out synapses.
Figure 3: Comparable pool-size of functional vesicles in synaptobrevin-2 knock-out and wild-type synapses.
Figure 4: Electron microscopy of stimulated and horseradish-peroxidase-labelled synaptobrevin-2 knock-out synaptic terminals.
Figure 5: Impaired endocytosis in synaptobrevin-2 knock-out synapses.

Similar content being viewed by others

References

  1. Galli, T. & Haucke, V. Cycling of synaptic vesicles: how far? How fast! Sci STKE (88) RE1 (2001).

  2. Aravanis, A.M., Pyle, J.L. & Tsien, R.W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Pyle, J.L., Kavalali, E.T., Piedras-Renteria, E.S. & Tsien, R.W. Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28, 221–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Stevens, C.F. & Williams, J.H. “Kiss and run” exocytosis at hippocampal synapses. Proc. Natl Acad. Sci. USA 97, 12828–12833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gandhi, S.P. & Stevens, C.F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Murthy, V.N. & De Camilli, P. Cell biology of the presynaptic terminal. Annu. Rev. Neurosci. 26, 701–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, Y.A. & Scheller, R.H. SNARE-mediated membrane fusion. Nature Rev. Mol. Cell Biol. 2, 98–106 (2001).

    Article  CAS  Google Scholar 

  9. Schoch, S. et al. SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294, 1117–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Washbourne, P. et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nature Neurosci. 5, 19–26 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Klingauf, J., Kavalali, E.T. & Tsien, R.W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Sara, Y., Mozhayeva, M.G., Liu, X. & Kavalali, E.T. Fast vesicle recycling supports neurotransmission during sustained stimulation at hippocampal synapses. J. Neurosci. 22, 1608–1617 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, J.Y., Wu, X.S. & Wu, L.G. Single and multiple vesicle fusion induce different rates of endocytosis at a central synapse. Nature 417, 555–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, J.Z., Davletov, B.A., Sudhof, T.C. & Anderson, R.G. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78, 751–760 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Poskanzer, K.E., Marek, K.W., Sweeney, S.T. & Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. von Poser, C. et al. Synaptotagmin regulation of coated pit assembly. J. Biol. Chem. 275, 30916–30924 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Springer, S. & Schekman, R. Nucleation of COPII vesicular coat complex by endoplasmic reticulum to Golgi vesicle SNAREs. Science 281, 698–700 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Gurunathan, S., Chapman-Shimshoni, D., Trajkovic, S. & Gerst, J.E. Yeast exocytic v-SNAREs confer endocytosis. Mol. Biol. Cell 11, 3629–3643 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Nonet, M.L. et al. UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell 10, 2343–2360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Betz, W.J., Mao, F. & Smith, C.B. Imaging exocytosis and endocytosis. Curr. Opin. Neurobiol. 6, 365–371 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Harata, N. et al. Limited numbers of recycling vesicles in small CNS nerve terminals: implications for neural signaling and vesicular cycling. Trends Neurosci. 24, 637–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Heuser, J.E. & Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sankaranarayanan, S. & Ryan, T.A. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nature Neurosci. 4, 129–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, L.G. & Betz, W.J. Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17, 769–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Richards, D.A., Guatimosim, C. & Betz, W.J. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals. Neuron 27, 551–559 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Jorgensen, E.M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Virmani, T., Han, W., Liu, X., Sudhof, T.C. & Kavalali, E.T. Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling. EMBO J. 22, 5347–5357 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, C. et al. Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Roth and N. Hamlin for technical assistance. This work was supported by the Howard Hughes Medical Institute (F.D., S.S and T.C.S) and the National Institute for Mental Health (grant MH066198 to E.T.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas C. Südhof or Ege T. Kavalali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Figures

Figs. S1, S2, S3 and S4 (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deák, F., Schoch, S., Liu, X. et al. Synaptobrevin is essential for fast synaptic-vesicle endocytosis. Nat Cell Biol 6, 1102–1108 (2004). https://doi.org/10.1038/ncb1185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing