Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms

A Corrigendum to this article was published on 01 April 2008

Abstract

Primary cilia are microtubule-based organelles involved in signal transduction and project from the surface of most vertebrate cells1. Proteins that can localize to the cilium, for example, Inversin and Bardet-Biedl syndrome (BBS) proteins, are implicated in both β-catenin-dependent and -independent Wnt signalling2,3,4. Given that Inversin and BBS proteins are found both at the cilium and elsewhere in the cell, the role of the cilium itself in Wnt signalling is not clear. Using three separate mutations that disrupt ciliogenesis (affecting Kif3a, Ift88 and Ofd1)5,6,7, we show in this study that the primary cilium restricts the activity of the canonical Wnt pathway in mouse embryos, primary fibroblasts, and embryonic stem cells. Interestingly, unciliated cells activate transcription only in response to Wnt stimulation, but do so much more robustly than ciliated cells. Loss of Kif3a, but not other ciliogenic genes, causes constitutive phosphorylation of Dishevelled (Dvl). Blocking the activity of casein kinase I (CKI) reverses this constitutive Dvl phosphorylation and abrogates pathway hyper-responsiveness. These results suggest that Kif3a restrains canonical Wnt signalling both by restricting the CKI-dependent phosphorylation of Dvl and through a separate ciliary mechanism. More generally, these findings reveal that, in contrast to its role in promoting Hedgehog (Hh) signalling, the cilium restrains canonical Wnt signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of primary cilia increases responsiveness of the canonical Wnt pathway.
Figure 2: Mutation of Kif3a stabilizes β-catenin.
Figure 3: In the absence of Kif3a, Dvl was constitutively phosphorylated by CKI.
Figure 4: Wnt pathway components are present at cilia.
Figure 5: Ciliated and unciliated cells respond differently to Wnt stimulation.

Similar content being viewed by others

References

  1. Singla, V. & Reiter, J. F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genet. 37, 537–543 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Ross, A. J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genet. 37, 1135–1140 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Gerdes, J. M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nature Genet. 39, 1350–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Yoder, B. K. et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am. J. Physiol. Renal Physiol. 282, F541–F552 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ferrante, M. I. et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nature Genet. 38, 112–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nusse, R. Wnt signaling in disease and in development. Cell Res. 15, 28–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Wallingford, J. B. & Habas, R. The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development 132, 4421–4436 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  11. Maretto, S. et al. Mapping Wnt/beta-catenin signaling during mouse development and in colorectal tumors. Proc. Natl Acad. Sci. USA 100, 3299–3304 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sulik, K. et al. Morphogenesis of the murine node and notochordal plate. Dev. Dyn. 201, 260–278 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nature Cell Biol. 6, 52–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Binnerts, M. E. et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc. Natl Acad. Sci. USA 104, 14700–14705 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Ulloa, F., Itasaki, N. & Briscoe, J. Inhibitory Gli3 activity negatively regulates Wnt/beta-catenin signaling. Curr. Biol. 17, 545–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Iwatsuki, K. et al. Wnt signaling interacts with Shh to regulate taste papilla development. Proc. Natl Acad. Sci. USA 104, 2253–2258 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Varjosalo, M., Li, S. P. & Taipale, J. Divergence of hedgehog signal transduction mechanism between Drosophila and mammals. Dev. Cell 10, 177–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Teng, J. et al. The KIF3 motor transports N-cadherin and organizes the developing neuroepithelium. Nature Cell Biol. 7, 474–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Haraguchi, K., Hayashi, T., Jimbo, T., Yamamoto, T. & Akiyama, T. Role of the kinesin-2 family protein, KIF3, during mitosis. J. Biol. Chem. 281, 4094–4099 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Tuma, M. C., Zill, A., Le Bot, N., Vernos, I. & Gelfand, V. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores. J. Cell Biol. 143, 1547–1558 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schneider, L. et al. PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Sato, A. et al. Profilin is an effector for Daam1 in non-canonical Wnt signaling and is required for vertebrate gastrulation. Development 133, 4219–4231 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Yanagawa, S., Lee, J. S. & Ishimoto, A. Identification and characterization of a novel line of Drosophila Schneider S2 cells that respond to wingless signaling. J. Biol. Chem. 273, 32353–32359 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, J. S., Ishimoto, A. & Yanagawa, S. Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J. Biol. Chem. 274, 21464–21470 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Sancho, J. M., Brennan, K. R., Castelo-Soccio, L. A. & Brown, A. M. Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol. Cell. Biol. 24, 4757–4768 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rena, G., Bain, J., Elliott, M. & Cohen, P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 5, 60–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Jimbo, T. et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biol. 4, 323–327 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Saadi-Kheddouci, S. et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the beta-catenin gene. Oncogene 20, 5972–5981 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Fischer, E. et al. Defective planar cell polarity in polycystic kidney disease. Nature Genet. 38, 21–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Moyer, J. H. et al. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice. Science 264, 1329–1333 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Marszalek, J. R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175–187 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Pleasure, B. Cheyette, and members of the Reiter lab for helpful discussions. Support for microscopy was provided by the NIH (P30 DK063720). This work was supported by funding from the NSF (V.S.), the CIRM (K.C.C.), the Sandler family, and the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy F. Reiter.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and Supplementary Methods (PDF 823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corbit, K., Shyer, A., Dowdle, W. et al. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10, 70–76 (2008). https://doi.org/10.1038/ncb1670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing