Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1

Abstract

Impaired selective turnover of p62 by autophagy causes severe liver injury accompanied by the formation of p62-positive inclusions and upregulation of detoxifying enzymes. These phenotypes correspond closely to the pathological conditions seen in human liver diseases, including alcoholic hepatitis and hepatocellular carcinoma. However, the molecular mechanisms and pathophysiological processes in these events are still unknown. Here we report the identification of a novel regulatory mechanism by p62 of the transcription factor Nrf2, whose target genes include antioxidant proteins and detoxification enzymes. p62 interacts with the Nrf2-binding site on Keap1, a component of Cullin-3-type ubiquitin ligase for Nrf2. Thus, an overproduction of p62 or a deficiency in autophagy competes with the interaction between Nrf2 and Keap1, resulting in stabilization of Nrf2 and transcriptional activation of Nrf2 target genes. Our findings indicate that the pathological process associated with p62 accumulation results in hyperactivation of Nrf2 and delineates unexpected roles of selective autophagy in controlling the transcription of cellular defence enzyme genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction between Keap1 and p62.
Figure 2: Crystal structure of Keap1-DC in complex with p62-KIR.
Figure 3: Competitive inhibition of the Nrf2–Keap1 pathway by p62.
Figure 4: Formation of p62-positive and Keap1-positive inclusions in autophagy-deficient hepatocytes.
Figure 5: Amelioration of liver dysfunction in autophagy-deficient mice by the additional loss of Nrf2.
Figure 6: Exacerbation of liver dysfunction in autophagy-deficient mice by the additional loss of Keap1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  2. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article  CAS  Google Scholar 

  3. Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325–332 (2008).

    Article  CAS  Google Scholar 

  4. Jung, H. S. et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318–324 (2008).

    Article  CAS  Google Scholar 

  5. Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nature Med. 13, 619–624 (2007).

    Article  CAS  Google Scholar 

  6. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    Article  CAS  Google Scholar 

  7. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  Google Scholar 

  8. Yorimitsu, T. & Klionsky, D. J. Autophagy: molecular machinery for self-eating. Cell Death Differ. 12 (Suppl. 2), 1542–1552 (2005).

    Article  CAS  Google Scholar 

  9. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    Article  CAS  Google Scholar 

  10. Platta, H. W. & Erdmann, R. Peroxisomal dynamics. Trends Cell Biol. 17, 474–484 (2007).

    Article  CAS  Google Scholar 

  11. Zhang, J. & Ney, P. A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16, 939–946 (2009).

    Article  CAS  Google Scholar 

  12. Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nature Rev. Immunol. 7, 767–777 (2007).

    Article  CAS  Google Scholar 

  13. Bjorkoy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    Article  Google Scholar 

  14. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  Google Scholar 

  15. Ichimura, Y. et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283, 22847–22857 (2008).

    Article  CAS  Google Scholar 

  16. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    Article  CAS  Google Scholar 

  17. Nezis, I. P. et al. Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain. J. Cell Biol. 180, 1065–1071 (2008).

    Article  CAS  Google Scholar 

  18. Kuusisto, E., Salminen, A. & Alafuzoff, I. Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12, 2085–2090 (2001).

    Article  CAS  Google Scholar 

  19. Stumptner, C., Fuchsbichler, A., Heid, H., Zatloukal, K. & Denk, H. Mallory body — a disease-associated type of sequestosome. Hepatology 35, 1053–1062 (2002).

    Article  CAS  Google Scholar 

  20. Zatloukal, K. et al. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am J Pathol 160, 255–263 (2002).

    Article  CAS  Google Scholar 

  21. Itoh, K. et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313–322 (1997).

    Article  CAS  Google Scholar 

  22. Itoh, K. et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76–86 (1999).

    Article  CAS  Google Scholar 

  23. Wakabayashi, N. et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nature Genet. 35, 238–245 (2003).

    Article  CAS  Google Scholar 

  24. Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. & Diehl, J. A. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 24, 8477–8486 (2004).

    Article  CAS  Google Scholar 

  25. Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25, 162–171 (2005).

    Article  CAS  Google Scholar 

  26. Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24, 7130–7139 (2004).

    Article  CAS  Google Scholar 

  27. Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J. & Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24, 10941–10953 (2004).

    Article  CAS  Google Scholar 

  28. Dinkova-Kostova, A. T. et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl Acad. Sci. USA 99, 11908–11913 (2002).

    Article  CAS  Google Scholar 

  29. Wakabayashi, N. et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl Acad. Sci. USA 101, 2040–2045 (2004).

    Article  CAS  Google Scholar 

  30. Kobayashi, A. et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 26, 221–229 (2006).

    Article  CAS  Google Scholar 

  31. Motohashi, H. & Yamamoto, M. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 10, 549–557 (2004).

    Article  CAS  Google Scholar 

  32. Holtzclaw, W. D., Dinkova-Kostova, A. T. & Talalay, P. Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Adv. Enzyme Regul. 44, 335–367 (2004).

    Article  CAS  Google Scholar 

  33. Kobayashi, M. & Yamamoto, M. Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46, 113–140 (2006).

    Article  CAS  Google Scholar 

  34. Komatsu, M. et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23, 1977–1986 (2004).

    Article  CAS  Google Scholar 

  35. Zipper, L. M. & Mulcahy, R. T. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J. Biol. Chem. 277, 36544–36552 (2002).

    Article  CAS  Google Scholar 

  36. McMahon, M., Thomas, N., Itoh, K., Yamamoto, M. & Hayes, J. D. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a 'tethering' mechanism: a two-site interaction model for the Nrf2–Keap1 complex. J. Biol. Chem. 281, 24756–24768 (2006).

    Article  CAS  Google Scholar 

  37. Tong, K. I. et al. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol. Cell. Biol. 27, 7511–7521 (2007).

    Article  CAS  Google Scholar 

  38. Padmanabhan, B. et al. Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell 21, 689–700 (2006).

    Article  CAS  Google Scholar 

  39. Seibenhener, M. L., Geetha, T. & Wooten, M. W. Sequestosome 1/p62 — More than just a scaffold. FEBS Lett. 581, 175–179 (2007).

    Article  CAS  Google Scholar 

  40. Lamark, T. et al. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J. Biol. Chem. 278, 34568–34581 (2003).

    Article  CAS  Google Scholar 

  41. Tong, K. I. et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26, 2887–2900 (2006).

    Article  CAS  Google Scholar 

  42. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  43. Ishii, T. et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275, 16023–16029 (2000).

    Article  CAS  Google Scholar 

  44. Okawa, H. et al. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem. Biophys. Res. Commun. 339, 79–88 (2006).

    Article  CAS  Google Scholar 

  45. Shibata, T. et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl Acad. Sci. USA 105, 13568–13573 (2008).

    Article  CAS  Google Scholar 

  46. Matsumoto, N. et al. Comprehensive proteomics analysis of autophagy-deficient mouse liver. Biochem. Biophys. Res. Commun. 368, 643–649 (2008).

    Article  CAS  Google Scholar 

  47. Korolchuk, V. I., Mansilla, A., Menzies, F. M. & Rubinsztein, D. C. Autophagy inhibition compromises degradation of ubiquitin–proteasome pathway substrates. Mol. Cell 33, 517–527 (2009).

    Article  CAS  Google Scholar 

  48. Otwinowski, A. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 (1997).

    Article  CAS  Google Scholar 

  49. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  51. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  52. DeLano, W. L. The PyMOL Molecular Graphics System (DeLano Scientific, 2002).

    Google Scholar 

  53. Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng. 8, 127–134 (1995).

    Article  CAS  Google Scholar 

  54. Muto, A. et al. Identification of Bach2 as a B-cell-specific partner for small maf proteins that negatively regulate the immunoglobulin heavy chain gene 3′ enhancer. EMBO J. 17, 5734–5743 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kouno and K. Endo (Tokyo Metropolitan Institute of Medical Science) for technical assistance, and the beamline staff at NW12 of PF-AR (Tsukuba, Japan) for technical help in data collection. We also thank A. Yamada, K. Kanno and A. Yabashi (Fukushima Medical University School of Medicine) for their help in histological studies; J. Yanagisawa (Tsukuba University) and Y. Saeki (Tokyo Metropolitan Institute of Medical Science) for mass spectrometric analyses; Y. Kawatani (Tohoku University) for technical assistance in microarray analyses; and R. Kopito and B. E. Riley (Stanford University) and T. Mizushima and T. Kumanomidou (Nagoya University) for helpful discussion. p62-knockout mice were provided by T. Ishii (Tsukuba University). The Biomedical Research Core of Tohoku University Graduate School of Medicine provided DRI-CHEM 7000V (Fuji Film Corp.). This work was supported by grants from the Japan Science and Technology Agency (M.K.), the Ministry of Education, Science and Culture of Japan (M.K., K.T. and M.Y.) and the Targeted Proteins Research Program (H.K., K.T. and M.Y.).

Author information

Authors and Affiliations

Authors

Contributions

M.K., K.T., I.U. and A.S. performed most of the experiments that characterized the knockout mice. I.U., Y.-S.S., Y.I. and A.K. performed the biochemical and cell biological experiments. Y.N. carried out microarray analyses. S.-i.I and T.N. performed mass spectrometric analyses. S.W. performed the histological and microscopic analyses. Structural and kinetics analyses were completed by H.K. and K.I.T. M.K., K.T. and M.Y. conceived the experiments. M.K., H.K., S.W., H.M., K.T. and M.Y. wrote the paper. E.K. and T.U. provided intellectual support. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Masaaki Komatsu, Keiji Tanaka or Masayuki Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsu, M., Kurokawa, H., Waguri, S. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12, 213–223 (2010). https://doi.org/10.1038/ncb2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing