Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor

Abstract

Small ubiquitin-like modifier (SUMO) family proteins regulate target-protein functions by post-translational modification. However, a potent and selective inhibitor targeting the SUMO pathway has been lacking. Here we describe ML-792, a mechanism-based SUMO-activating enzyme (SAE) inhibitor with nanomolar potency in cellular assays. ML-792 selectively blocks SAE enzyme activity and total SUMOylation, thus decreasing cancer cell proliferation. Moreover, we found that induction of the MYC oncogene increased the ML-792-mediated viability effect in cancer cells, thus indicating a potential application of SAE inhibitors in treating MYC-amplified tumors. Using ML-792, we further explored the critical roles of SUMOylation in mitotic progression and chromosome segregation. Furthermore, expression of an SAE catalytic-subunit (UBA2) S95N M97T mutant rescued SUMOylation loss and the mitotic defect induced by ML-792, thus confirming the selectivity of ML-792. As a potent and selective SAE inhibitor, ML-792 provides rapid loss of endogenously SUMOylated proteins, thereby facilitating novel insights into SUMO biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ML-792 forms an adduct with SUMO and inhibits SAE enzyme activity in vitro.
Figure 2: ML-792 inhibits SAE and SUMO-pathway activities in cells.
Figure 3: ML-792 inhibits cell proliferation, and cells bearing induced Myc are more sensitive toward ML-792.
Figure 4: ML-792 compromises mitosis.
Figure 5: ML-792 leads to anaphase/telophase decrease and formation of DNA bridges.
Figure 6: ML-792 leads to anaphase/telophase decrease and formation of DNA bridges.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Protein Data Bank

References

  1. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    CAS  PubMed  Google Scholar 

  2. Gareau, J.R. & Lima, C.D. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11, 861–871 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wan, J., Subramonian, D. & Zhang, X.D. SUMOylation in control of accurate chromosome segregation during mitosis. Curr. Protein Pept. Sci. 13, 467–481 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matunis, M.J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996).

    CAS  PubMed  Google Scholar 

  5. Girdwood, D. et al. P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054 (2003).

    CAS  PubMed  Google Scholar 

  6. Ouyang, J., Valin, A. & Gill, G. Regulation of transcription factor activity by SUMO modification. Methods Mol. Biol. 497, 141–152 (2009).

    CAS  PubMed  Google Scholar 

  7. Verger, A., Perdomo, J. & Crossley, M. Modification with SUMO: a role in transcriptional regulation. EMBO Rep. 4, 137–142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sarangi, P. & Zhao, X. SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem. Sci. 40, 233–242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461–467 (2009).

    CAS  PubMed  Google Scholar 

  10. Ivanschitz, L., De Thé, H. & Le Bras, M. PML, SUMOylation, and senescence. Front. Oncol. 3, 171 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Mo, Y.Y., Yu, Y., Theodosiou, E., Ee, P.L. & Beck, W.T. A role for Ubc9 in tumorigenesis. Oncogene 24, 2677–2683 (2005).

    CAS  PubMed  Google Scholar 

  12. Chen, S.F. et al. Ubc9 expression predicts chemoresistance in breast cancer. Chin. J. Cancer 30, 638–644 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moschos, S.J. et al. Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues. Hum. Pathol. 41, 1286–1298 (2010).

    CAS  PubMed  Google Scholar 

  14. Liu, X. et al. Knockdown of SUMO-activating enzyme subunit 2 (SAE2) suppresses cancer malignancy and enhances chemotherapy sensitivity in small cell lung cancer. J. Hematol. Oncol. 8, 67 (2015).

    PubMed  PubMed Central  Google Scholar 

  15. He, X. et al. Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation. PLoS One 10, e0123882 (2015).

    PubMed  PubMed Central  Google Scholar 

  16. Kessler, J.D. et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 335, 348–353 (2012).

    CAS  PubMed  Google Scholar 

  17. Hoellein, A. et al. Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood 124, 2081–2090 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, B. et al. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc. Natl. Acad. Sci. USA 112, E1724–E1733 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Becker, J. et al. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol. 20, 525–531 (2013).

    CAS  PubMed  Google Scholar 

  20. Fukuda, I. et al. Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem. Biol. 16, 133–140 (2009).

    CAS  PubMed  Google Scholar 

  21. Takemoto, M. et al. Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrata. J. Antibiot. (Tokyo) 67, 335–338 (2014).

    CAS  Google Scholar 

  22. Suzawa, M. et al. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver. eLife 4, e09003 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Fukuda, I. et al. Kerriamycin B inhibits protein SUMOylation. J. Antibiot. (Tokyo) 62, 221–224 (2009).

    CAS  Google Scholar 

  24. Kim, Y.S., Nagy, K., Keyser, S. & Schneekloth, J.S. Jr. An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. Chem. Biol. 20, 604–613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bogachek, M.V. et al. Sumoylation pathway is required to maintain the basal breast cancer subtype. Cancer Cell 25, 748–761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hirohama, M. et al. Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2. ACS Chem. Biol. 8, 2635–2642 (2013).

    CAS  PubMed  Google Scholar 

  27. Soucy, T.A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    CAS  PubMed  Google Scholar 

  28. Swords, R.T. et al. Pevonedistat (MLN4924), a first-in-class NEDD8-activating enzyme inhibitor, in patients with acute myeloid leukaemia and myelodysplastic syndromes: a phase 1 study. Br. J. Haematol. 169, 534–543 (2015).

    CAS  PubMed  Google Scholar 

  29. Brownell, J.E. et al. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol. Cell 37, 102–111 (2010).

    CAS  PubMed  Google Scholar 

  30. Lee, Y.K., Thomas, S.N., Yang, A.J. & Ann, D.K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J. Biol. Chem. 282, 1595–1606 (2007).

    CAS  PubMed  Google Scholar 

  31. Zhu, S. et al. Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Mol. Cell 33, 570–580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, X. et al. Absolute quantification of E1, ubiquitin-like proteins and Nedd8-MLN4924 adduct by mass spectrometry. Cell Biochem. Biophys. 67, 139–147 (2013).

    CAS  PubMed  Google Scholar 

  33. Chen, J.J. et al. Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. J. Biol. Chem. 286, 40867–40877 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nacerddine, K. et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769–779 (2005).

    CAS  PubMed  Google Scholar 

  35. Garcia-Dominguez, M. & Reyes, J.C. SUMO association with repressor complexes, emerging routes for transcriptional control. Biochim. Biophys. Acta 1789, 451–459 (2009).

    CAS  PubMed  Google Scholar 

  36. Núñez-O'Mara, A. et al. PHD3-SUMO conjugation represses HIF1 transcriptional activity independently of PHD3 catalytic activity. J. Cell Sci. 128, 40–49 (2015).

    PubMed  Google Scholar 

  37. Golebiowski, F. et al. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2, ra24 (2009).

    PubMed  Google Scholar 

  38. Niskanen, E.A. et al. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biol. 16, 153 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Nuro-Gyina, P.K. & Parvin, J.D. Roles for SUMO in pre-mRNA processing. Wiley Interdiscip. Rev. RNA 7, 105–112 (2016).

    CAS  PubMed  Google Scholar 

  40. Psakhye, I. & Jentsch, S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151, 807–820 (2012).

    CAS  PubMed  Google Scholar 

  41. Morris, J.R. et al. The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462, 886–890 (2009).

    CAS  PubMed  Google Scholar 

  42. Moschos, S.J. et al. SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene 26, 4216–4225 (2007).

    CAS  PubMed  Google Scholar 

  43. Jacquemont, C. & Taniguchi, T. Proteasome function is required for DNA damage response and fanconi anemia pathway activation. Cancer Res. 67, 7395–7405 (2007).

    CAS  PubMed  Google Scholar 

  44. Sakasai, R. & Tibbetts, R. RNF8-dependent and RNF8-independent regulation of 53BP1 in response to DNA damage. J. Biol. Chem. 283, 13549–13555 (2008).

    CAS  PubMed  Google Scholar 

  45. Eifler, K. & Vertegaal, A.C. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem. Sci. 40, 779–793 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dasso, M. Emerging roles of the SUMO pathway in mitosis. Cell Div. 3, 5 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Milhollen, M.A. et al. Treatment-emergent mutations in NAEβ confer resistance to the NEDD8-activating enzyme inhibitor MLN4924. Cancer Cell 21, 388–401 (2012).

    CAS  PubMed  Google Scholar 

  48. Minto, C.F. et al. Response surface model for anesthetic drug interactions. Anesthesiology 92, 1603–1616 (2000).

    CAS  PubMed  Google Scholar 

  49. Chou, T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank J. Klekota for bioinformatics support and K. Galvin, P. Veiby, C. Lou, M. Manfredi and C. Claiborne for insightful comments. We thank R. Hay (University of Dundee) for p300 cells.

Author information

Authors and Affiliations

Authors

Contributions

X.H., E.S.L., N.B. and S.M.P. conceived and designed the experiments. X.H., J.R., M.G., H.B., C.R., K.X., Z.Y. and J.B. performed cell biology experiments. T.S. and J.M. performed in vitro enzymatic assays. X.Y. and H.L. performed mass spectrometry analysis. M.S. provided structural prediction. H.X., M.D., D.E., H.M., Z.H., J.G., R.C. and S.L. designed chemical compounds and/or performed chemical synthesis. E.K., P.S. and E.S.L. performed RNA-seq analysis. All authors discussed the data and provided scientific input. X.H., T.S., E.K., L.R.D., J.E.B., J.N., S.L., E.S.L., N.B. and S.M.P. wrote and/or edited the paper.

Corresponding authors

Correspondence to Xingyue He or Sai M Pulukuri.

Ethics declarations

Competing interests

Takeda Pharmaceuticals International Co. provided complete financial support for the study design, data collection and analysis, decision to publish, preparation of the manuscript and salaries for authors X.H., J.R., T.S., E.K., J.M., M.G., H.B., X.Y., H.L., C.R., P.S., K.X., Z.Y., M.S., J.B., H.X., M.D., D.E., H.M., Z.H., J.G., R.C., L.R.D., J.E.B., J.N., S.L., E.S.L., N.B. and S.M.P. during the time when studies were conducted. Patent application WO2015/002994 has been filed for compound ML-792.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–22. (PDF 3242 kb)

Supplementary Table 1

ML-792 activity against a panel of 366 ATP-utilizing enzymes. (XLSX 34 kb)

Supplementary Table 2

RNAseq analysis on HCT116 cells harboring UBA2 shRNA s or treated with ML-792. (XLSX 111 kb)

Supplementary Table 3

quantitative proteomic profiling in HCT116 cells treated with DMSO or ML-792. (XLSX 1405 kb)

Supplementary Note 1

Synthesis and Characterization of ML-792. (PDF 451 kb)

phase-contrast time-lapse microscopy with DMSO treated HCT116 cells (MOV 2585 kb)

phase-contrast time-lapse microscopy with ML-792 treated HCT116 cells (MOV 2514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Riceberg, J., Soucy, T. et al. Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol 13, 1164–1171 (2017). https://doi.org/10.1038/nchembio.2463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2463

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research