Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response

Abstract

Primary cilia and basal bodies are evolutionarily conserved organelles that mediate communication between the intracellular and extracellular environments. Here we show that bbs1, bbs4 and mkks (also known as bbs6), which encode basal body proteins, are required for convergence and extension in zebrafish and interact with wnt11 and wnt5b. Suppression of bbs1, bbs4 and mkks transcripts results in stabilization of β-catenin with concomitant upregulation of T-cell factor (TCF)-dependent transcription in both zebrafish embryos and mammalian ciliated cells, a defect phenocopied by the silencing of the axonemal kinesin subunit KIF3A but not by chemical disruption of the cytoplasmic microtubule network. These observations are attributable partly to defective degradation by the proteasome; suppression of BBS4 leads to perturbed proteasomal targeting and concomitant accumulation of cytoplasmic β-catenin. Cumulatively, our data indicate that the basal body is an important regulator of Wnt signal interpretation through selective proteolysis and suggest that defects in this system may contribute to phenotypes pathognomonic of human ciliopathies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The convergent extension phenotypes of bbs1, bbs4 and mkks morphants.
Figure 2: Dysregulation of Wnt signaling in zebrafish morphants.
Figure 3: HEK 293T cells are ciliated.
Figure 4: Dissection of the Wnt defect in HEK 293T cells. (a) Relative luciferase activity in response to active β-catenin upon suppression of BBS1, BBS4 and MKKS.
Figure 5: Wnt 3a overexpression phenocopies the loss of ciliary function.
Figure 6: Proteasomal protein degradation is impaired in BBS4-silenced cells.
Figure 7: Proteasomal subunit RPN10 interacts with BBS4.

Similar content being viewed by others

References

  1. Logan, C.Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Veeman, M.T., Axelrod, J.D. & Moon, R.T. A second canon: functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Aberle, H., Bauer, A., Stappert, J., Kispert, A. & Kemler, R. beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16, 3797–3804 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yan, D. et al. Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/beta-catenin signaling is elevated in human colon tumors. Proc. Natl. Acad. Sci. USA 98, 14973–14978 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jho, E.H. et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Axelrod, J.D., Miller, J.R., Shulman, J.M., Moon, R.T. & Perrimon, N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev. 12, 2610–2622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boutros, M., Paricio, N., Strutt, D.I. & Mlodzik, M. Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94, 109–118 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Torban, E., Kor, C. & Gros, P. Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates. Trends Genet. 20, 570–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Curtin, J.A. et al. Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr. Biol. 13, 1129–1133 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Greene, N.D.E., Gerrelli, D., Van Straaten, H.W.M. & Copp, A.J. Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mech. Dev. 73, 59–72 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Kibar, Z. et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant loop-tail. Nat. Genet. 28, 251–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Kibar, Z. et al. Identification of a new chemically induced allele (Lp(m1Jus)) at the loop-tail locus: Morphology, histology, and genetic mapping. Genomics 72, 331–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, A.M., Wang, B.L. & Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Ross, A.J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nat. Genet. 37, 1135–1140 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Badano, J.L. et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 439, 326–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Marlow, F., Gonzalez, E.M., Yin, C.Y., Rojo, C. & Solnica-Krezel, L. No tail co-operates with non-canonical Wnt signaling to regulate posterior body morphogenesis in zebrafish. Development 131, 203–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Heisenberg, C.P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Ishitani, T. et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature 399, 798–802 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Weidinger, G., Thorpe, C., Wuennenberg-Stapleton, K., Ngai, J. & Moon, R. The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/beta-catenin signaling in mesoderm and neuroectoderm patterning. Curr. Biol. 15, 489–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Wessely, O., Agius, E., Oelgeschlager, M., Pera, E. & Robertis, E.D. Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev. Biol. 234, 161–173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nojima, H. et al. Genetic evidence for involvement of maternally derived Wnt canonical signaling in dorsal determination in zebrafish. Mech. Dev. 121, 371–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Rosenbaum, J.L. & Child, F.M. Flagellar regeneration in protozoan flagellates. J. Cell Biol. 34, 345–364 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Veeman, M.T., Slusarski, D.C., Kaykas, A., Louie, S.H. & Moon, R.T. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr. Biol. 13, 680–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, J.C. et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nat. Genet. 36, 462–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Marszalek, J.R., Ruiz-Lozano, P., Roberts, E., Chien, K.R. & Goldstein, L.S.B. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. USA 96, 5043–5048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sawa, A., Khan, A.A., Hester, L.D. & Snyder, S.H. Glyceraldehyde-3-phosphate dehydrogenase: Nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl. Acad. Sci. USA 94, 11669–11674 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Itoh, K., Brott, B.K., Bae, G.-U., Ratcliffe, M.J. & Sokol, S.Y. Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J. Biol. 4, 1 (2005).

    Article  Google Scholar 

  33. Olson, D.J. & Papkoff, J. Regulated expression of Wnt family members during proliferation of C57mg mammary cells. Cell Growth Differ. 5, 197–206 (1994).

    CAS  PubMed  Google Scholar 

  34. Shimizu, H. et al. Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ. 8, 1349–1358 (1997).

    CAS  PubMed  Google Scholar 

  35. Slusarski, D.C., Corces, V. & Moon, R. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Chiang, A.P. et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc. Natl. Acad. Sci. USA 103, 6287–6292 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wigley, W.C. et al. Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. DeMartino, G.N. Purification of PA700, the 19S regulatory subunit of the 26S proteasome. Methods Enzymol. 398, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994).

    CAS  PubMed  Google Scholar 

  40. Deveraux, Q., Jensen, C. & Rechsteiner, M. Molecular cloning and expression of a 26S proteasome subunit enriched in dileucine repeats. J. Biol. Chem. 270, 23726–23729 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Gherman, A., Davis, E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Nusse, R. Wnt signaling in disease and in development. Cell Res. 15, 28–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Ishitani, T. et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang, H. et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue. Cancer Cell 4, 349–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Mikels, A.J. & Nusse, R. Purified Wnt5a protein activates or inhibits beta-catenin–TCF signaling depending on receptor context. PLoS Biol. 4, e115 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Topol, L. et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J. Cell Biol. 162, 899–908 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signalling pathways. Nat. Genet. 37, 537–543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davis, E.E., Brueckner, M. & Katsanis, N. The emerging complexity of the vertebrate cilium: new functional roles for an ancient organelle. Dev. Cell 11, 9–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Thisse, C., Thisse, B., Schilling, T.F. & Postlethwait, J.H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).

    CAS  PubMed  Google Scholar 

  50. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work we were unable to cite because of a strict 50-reference limit. We thank J. Nathans, J. Axelrod, L. Menezes, G. Germino and E. Davis for their critical evaluation of this manuscript, and A. Gherman for the quantification of the western blots. We also thank J. Nathans for the gift of the 293T luciferase reporter cell line, J. Kitajewski for the mouse Wnt cDNAs, G. Walz for the gift of the Myr/Pal Dvl construct, B. Yoder for the gift of anti-polaris/IFT88 antibody and S. Leach for the validated β-catenin antibody. This work was supported by grants from the German Academic Exchange Service (J.G.), the Polycystic Kidney Disease Foundation (J.B.), the National Institute of Child Health and Development (N.K.), the National Institute of Diabetes, Digestive and Kidney disorders (N.K.), the National Institute for Arthritis and Musculoskeletal disorders (S.F.) and the Medical Research Council (P.L.B.). P.L.B. is a Senior Wellcome Trust Fellow. P.A.B. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Katsanis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 826 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerdes, J., Liu, Y., Zaghloul, N. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat Genet 39, 1350–1360 (2007). https://doi.org/10.1038/ng.2007.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2007.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing