Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains

Abstract

Quantitative trait loci mapping was used to identify the chromosomal location of genes which contribute to oral morphine preference (in a two–bottle choice paradigm) of C57BL/6J mice, compared to DBA/2J mice. An F2 intercross of these two strains (606 mice) was phenotyped for morphine preference and those mice demonstrating extreme values for morphine consumption (the highest and lowest 7.7%) were genotyped for 157 murine microsatellite polymorphisms. Maximum likelihood methods revealed three loci on murine chromosomes 1, 6 and 10 which are responsible for nearly 85% of the genetic variance observed between the two parental strains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rounsaville, B.J. et al. Psychiatric disorders in relatives of probands with opiate addiction. Arch. gen. Psych. 48, 33–42 (1991).

    Article  CAS  Google Scholar 

  2. Mirin, S.M., Weiss, R.D., Sollogub, A. & Michael, J. in Substance Abuse and Psychopathology 75–106 (American Psychiatry Association Press, Washington, D.C., 1984).

    Google Scholar 

  3. Cadoret, R.J., Troughton, E., O'Gorman, T.W. & Heywood, E. An adoption study of genetic and environmental factors in drug abuse. Arch. gen. Psych. 43, 1131–1138 (1986).

    Article  CAS  Google Scholar 

  4. Rounsaville, B.J. et al. Psychiatric diagnoses of treatment-seeking cocaine abusers. Arch. gen. Psych. 46, 43–51 (1991).

    Article  Google Scholar 

  5. Kosten, T., Gawin, F., Rounsaville, R. & Kleber, H. Cocaine abuse among opioid addicts: Demographic and diagnostic factors in treatment. Am. J. drug alc. Abuse 12, 1–16 (1986).

    Article  CAS  Google Scholar 

  6. McClearn, G.E. & Rogers, D.A. Differences in alcohol preference among inbred strains of mice. Quant. J. Stud. Alc. 20, 691–695 (1959).

    Google Scholar 

  7. Belknap, J.K., Crabbe, J.C., Riggan, J. & O'Toole, L.A. Voluntary consumption of morphine in 15 inbred mouse strains. Psychopharmacology 112, 352–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Alexander, R.C., Duda, J., Vogel, W. & Berrettini, W.H. Morphine and cocaine preference in inbred mice. Psychiat. Genet. 3, 33–37 (1993).

    Article  Google Scholar 

  9. Belknap, J.K. Physical dependence induced by the voluntary consumption of morphine in inbred mice. Pharmacol. biochem. Behav. 35, 311–315 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Horowitz, G.P., Whitney, G., Smith, J.C. & Stephen, F.K. Morphine ingestion: Genetic control in mice. Psychopharmacology 52, 119–122 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Berrettini, W.H., Alexander, R., Ferraro, T.N. & Vogel, W.H. A study of morphine preference In inbred mouse strains. Psychiat. Genet. (in the press).

  12. Brase, D.A., Loh, H.H. & Way, W.L. Comparison of the effects of morphine on locomotor activity, analgesia and primary and protracted physical dependence in six mouse strains. J. Pharmacol. exp. Ther. 210, 368–374 (1977).

    Google Scholar 

  13. Belknap, J.K., Noordewier, B. & Lame, M. Genetic dissociation of multiple morphine effects among C57BL/7J, DBA/2J and CSH/HeJ inbred mouse strains. Physiol. Behav. 46, 69–74 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. George, F.R., Elmer, G.I., Meisch, R.A. & Goldberg, S.R. Orally delivered cocaine functions as a positive reinforcer in C57BL/6J mice. Pharmacol. biochem. Behav. 38, 897–903 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Elmer, G.I., Meisch, R.A. & George, F.R. Mouse strain differences in operant self-administration of ethanol. Behav. Genet. 17, 439–451 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Elmer, G.I., Peiper, J.O., Goldberg, S.R. & George, F.R. Operant opioid self-administration: analgesia, stimulation and respiratory depression in mu deficient mice. Psychopharmacology (in the press).

  17. Phillips, T.J., Belknap, J.K. & Crabbe, J.C. Use of recombinant inbred strains to assess vulnerability to drug abuse at the genetic level. J. addict. Dis. 19, 73–87 (1991).

    Article  Google Scholar 

  18. Crabbe, J.C., Kosobud, A., Young, E.R. & Janowsky, J. Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred animals. Neurobehav. Toxol. Teratol. 5, 181–187 (1983).

    CAS  Google Scholar 

  19. Plomin, R. & McClearn, G.E. Quantitative trait loci (QTL) analyses and alcohol-related behaviors. Behav. Genet. 23, 197–211 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Plomin, R., McClearn, G.E. & Gora-Maslak, G. Use of recombinant inbred strains to detect quantitative trait loci associated with behavior. Behav. Genet. 21, 99–116 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Gora-Maskak, G., McClearn, G.E., Crabbe, J.C., Phillips, R.J., Belknap, J.K. & Plomin, R. Use of recombinant inbred strains to identify quantitative trait loci in Psychopharmacology. Psychopharmacology 104, 413–424 (1991).

    Article  Google Scholar 

  22. George, F.R. Genetic models in the study of alcoholism and substance abuse mechanisms. Neuro-psychopharmacol. biol. Psychiatr. 17, 345–361 (1993).

    Article  CAS  Google Scholar 

  23. Lander, E.S. & Botstein, D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jacob, H.J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 647, 213–224 (1991).

    Article  Google Scholar 

  25. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353, 521–529 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Dietrich, W.F. et al. Genetic identification of Mom-1, a major modifier locus affecting Min-induced Intestinal neoplasia In the mouse. Cell 75, 631–639 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Rise, M.L., Frankel, W.N., Coffin, J.M. & Seyfried, T.N. Genes for epilepsy mapped in the mouse. Science 254, 669–673 (1991).

    Article  Google Scholar 

  28. Waller, M.B., McBride, W.J., Lumeng, L., Gaff, T.M. & Li, T.-K. Intragastric self-infusion of ethanol by the P and NP lines of rats. Science 225, 78–80 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. Froehlich, J.C. & Li, T.-K. Animal models for the study of alcoholism: utility of selected lines. J. add. Dis. 10, 61–71 (1991).

    Article  CAS  Google Scholar 

  30. Neumann, P.E. Inference in linkage analysis of multifactorial traits using recombinant inbred strains of mice. Behav. Genet. 22, 665–676 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Belknap, J.K. Emperical estimates of Bonferroni corrections for use in chromosome mapping studies with the BXD recombinant inbred strains. Behav. Genet. 22, 677–684 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Lush, I.E. The genetics of tasting in mice. III.Quinine. Genet. Res. 44, 151–160 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Fuller, J.L. Single locus control of saccharin preference in mice. J. Hered. 65, 33–36 (1974).

    Article  CAS  PubMed  Google Scholar 

  34. Belknap, J.K. et al. Single locus control of saccharin intake in BXD/Ty recombinant inbred (Rl) mice: some methodological implications for Rl strain analysis. Behav. Genet. 22, 81–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Lahiri, D.K. & Nurnberger, Jr., J.I. A rapid non-enzymatic method for the preparation of HMW DNAfrom blood for RFLP studies. Nucl. Acids Res. 19, 5444 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Copeland, N.G. et al. A genetic linkage map of the mouse. Science 262, 57–66 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Berrettini, W.H. et al. Genomic screening for genes predisposing to bipolar disease. Psychiat. Genet. 2, 191–208 (1991).

    Article  Google Scholar 

  39. Lander, E.S. et al. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomes 1, 174–181 (1987).

    Article  CAS  Google Scholar 

  40. Paterson, A.H. et al. Inheritance and evolution of Mendelian factors underlying quantitative traits in interspecles crosses of tomato. Genetics 127, 181–197 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Paterson, A.H. et al. Resolution of quantitative traits into Mendelian factors by using acomplete linkage map of restriction fragment length polymorphisms. Nature 335, 721–725 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrettini, W., Ferraro, T., Alexander, R. et al. Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nat Genet 7, 54–58 (1994). https://doi.org/10.1038/ng0594-54

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0594-54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing