Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue

Abstract

The expansion of GAG triplet repeats in the translated region of the human HD gene, encoding a protein (huntingtin) of unknown function, is a dominant mutation leading to manifestation of Huntington's disease. Targeted disruption of the homologous mouse gene (Hdh), to examine the normal role of huntingtin, shows that this protein is functionally indispensable, since nullizygous embryos become developmentally retarded and disorganized, and die between days 8.5 and 10.5 of gestation. Based on the observation that the level of the regionalized apoptotic cell death in the embryonic ectoderm, a layer expressing the Hdh gene, is much higher than normal in the null mutants, we propose that huntingtin is involved in processes counterbalancing the operation of an apoptotic pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harper, P.S. Huntington's Disease. Major Problems in Neurology, vol. 22, (W.B. Saunders, London, 1991).

  2. Albin, R.L. & Tagle, D.A. Genetics and molecular biology of Huntington's disease. Trends Neurosci. 18, 11–14 (1995).

    Article  CAS  Google Scholar 

  3. Gusella, J.F. & MacDonald, M.E. Huntington's disease. Sem. Cell Biol. 6, 21–28 (1995).

    Article  CAS  Google Scholar 

  4. Albin, R.L., Young, A.B. & Penney, J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12: 366–375 (1989).

    Article  CAS  Google Scholar 

  5. Portera-Cailliau, C., Hedreen, J.C., Price, D.L. & Koliatsos, V.E. Evidence for apoptotic cell death in Huntigton disease and excitotoxic animal models. J. Neurosci. 15, 3775–3787 (1995).

    Article  CAS  Google Scholar 

  6. Thomas, L.B., Gates, D.J., Richfield, E.K., O'Brien, T.F., Schweitzer, J.B. & Steindler, D.A. DNA end labeling (TUNEL) in Huntington's disease and other neuropathological conditions. Exp. Neurol. (in the press).

  7. Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  8. Ambrose, C.M. et al. Structure and expression of the Huntington's disease gene: evidence against simple inactivation due to an expanded GAG repeat. Som. Cell molec. Genet. 20, 27–38 (1994).

    Article  CAS  Google Scholar 

  9. Richards, R.I. & Sutherland, G.R. Dynamic mutations: a new class of mutations causing human disease. Cell 70, 709–712 (1992).

    Article  CAS  Google Scholar 

  10. Sutherland, G.R. & Richards, R.I. Dynamic mutations on the move. J. med. Genet. 30, 978–981 (1993).

    Article  CAS  Google Scholar 

  11. Sharp, A. et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 14, 1065–1074 (1995).

    Article  CAS  Google Scholar 

  12. Trottier, Y. et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genet. 10, 104–110 (1995).

    Article  CAS  Google Scholar 

  13. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron 14, 1075–1081 (1995).

    Article  CAS  Google Scholar 

  14. Jou, Y-S. & Myers, R.M. Evidence from antibody studies that the GAG repeat in the Huntington disease gene is expressed in the protein. Hum. molec. Genet. 4, 465–469 (1995).

    Article  CAS  Google Scholar 

  15. Kremer, H.P.H. et al. Worldwide study of the Huntington's disease mutation: the sensitivity and specificity of repeated GAG sequences. New Engl. J. Med. 330, 1401–1406 (1994).

    Article  CAS  Google Scholar 

  16. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington's disease. Nature Genet. 4, 387–392 (1993).

    Article  CAS  Google Scholar 

  17. Telenius, H. et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum. molec. Genet. 2, 1535–1540 (1993).

    Article  CAS  Google Scholar 

  18. Stine, O.C., Pleasant, N., Franz, M.L., Abbott, M.H., Folstein, S.E. and Ross, C.A. Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15. Hum. molec. Genet. 2, 1547–1549 (1993).

    Article  CAS  Google Scholar 

  19. Andrew, S.E., Goldberg, Y.P., Theilmann, J., Zeisler, J. & Hayden, M.R. A CCG repeat polymorphism adjacent to the GAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum. Molec. Genet. 3, 65–67 (1994).

    Article  CAS  Google Scholar 

  20. Barren, L.H., Rae, A., Holloway, S., Brock, D.J.H. & Warner, J.P. A single allele from the polymorphic CCG rich sequence immediately 3′ to the unstable CAG trinucleotide in the IT15 cDNA shows almost complete disequilibrium with the Huntington's disease chromosome in the Scottish population. Hum. molec. Genet. 3: 173–175 (1994).

    Article  Google Scholar 

  21. Li, S. et al. Huntington's disease gene (IT15) is widely expressed in human and rat tissues. Neuron 11, 985–993 (1993).

    Article  CAS  Google Scholar 

  22. Strong, T.V. et al. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Nature Genet. 5, 259–265 (1993).

    Article  CAS  Google Scholar 

  23. Hoogeveen, A.T. et al. Characterization and localization of the Huntington disease gene product. Hum. molec. Genet. 2, 2069–2073 (1993).

    Article  CAS  Google Scholar 

  24. Ambrose, M.P. et al. Huntington's disease gene: regional and cellular expression in brain of normal and affected individuals. Ann. Neurol. 37, 218–230 (1995).

    Article  Google Scholar 

  25. Gerber, H.-P. et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263, 808–811 (1994).

    Article  CAS  Google Scholar 

  26. Barnes, G.T. et al. Mouse Huntington's disease gene homolog (Hdh). Som. Cell molec. Genet. 20: 87–97 (1994).

    Article  CAS  Google Scholar 

  27. Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 (1995).

    Article  CAS  Google Scholar 

  28. Duyao, M.P. et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407–410 (1995).

    Article  CAS  Google Scholar 

  29. Poelmann, R.E. & Vermeij-Keers, C. Cell degeneration in the mouse embryo: a prerequisite for normal development. In Progress in Differentiation Research (ed. Müller-Béra, N.) 93–102 (North Holland Publ. Co., Amsterdam, 1976).

    Google Scholar 

  30. Poelmann, R.E. Morphological changes in the ectoderm of early mouse embryos related to the patterns of cell division and cell degeneration. J. Anat. 124, 238–240 (1977).

    Google Scholar 

  31. Poelmann, R.E. Differential mitosis and degeneration patterns in relation to the alterations in the shape of the embryonic ectoderm of early post-implantation mouse embryos. J. Embryol. exp. Morph. 55, 33–51 (1980).

    CAS  PubMed  Google Scholar 

  32. Abrams, J.M., White, K., Fessler, L.I. & Steller, H. Programmed cell death during Drosophila embryogenesis. Development 117, 29–43 (1993).

    CAS  PubMed  Google Scholar 

  33. Gao, X., Blackburn, M.R. & Knudsen, T.B. Activation of apoptosis in early mouse embryos by 2′-deoxyadenosine exposure. Teratology 49, 1–12 (1994).

    Article  CAS  Google Scholar 

  34. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  35. Jollie, W.P., Development, morphology, and function of the yolk-sac placenta in laboratory rodents. Teratology 41, 361–381 (1990).

    Article  CAS  Google Scholar 

  36. Kadokawa, Y., Kato, Y. & Eguchi, G. Cell lineage analysis of the primitive and visceral endoderm of mouse embryos cultured in vitro. Cell Diff. 21, 69–76 (1987).

    Article  CAS  Google Scholar 

  37. Chen, W.S. et al. Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev. 8, 2466–2477 (1994).

    Article  CAS  Google Scholar 

  38. Copp, A.J. Death before birth: clues from gene knockouts and mutations. Trends Genet. 11, 87–93 (1995).

    Article  CAS  Google Scholar 

  39. Lewis, S.E., Turchin, H.A. & Gluecksohn-Waelsch, S. The developmental analysis of an embryonic lethal (c6H) in the mouse. J. Embryol. exp. Morph. 36, 363–371 (1976).

    CAS  PubMed  Google Scholar 

  40. Niswander, L., Yee, D., Rinchik, E.M., Russell, L.B. & Magnuson, T. The albino deletion complex and early postimplantation survival in the mouse. Development 102, 45–53 (1988).

    CAS  PubMed  Google Scholar 

  41. Yamaguchi, T.P., Harpal, K., Henkemeyer, M. & Rossant, J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8, 3032–3044 (1994).

    Article  CAS  Google Scholar 

  42. Deng, C-X., Wynshaw-Boris, A., Shen, M.M., Daugherty, C., Ornitz, D.M. & Leder, P. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev. 8, 3045–3057 (1994).

    Article  CAS  Google Scholar 

  43. Spyropoulos, D.D. & Capecchi, M.R. Targeted disruption of the even-skipped gene, evxl, causes early postimplantation lethality of the mouse conceptus. Genes Dev. 8, 1949–1961 (1994).

    Article  CAS  Google Scholar 

  44. Martin, S.J., Green, D.R. & Cotter, T.G. Dicing with death: dissecting the components of the apoptosis machinery. Trends biochem. Sci. 19, 26–30 (1994).

    Article  CAS  Google Scholar 

  45. Bellamy, C.O.C., Malcomson, R.D.G., Harrison, D.J. & Wyllie, A.H. Cell death in health and disease: the biology and regulation of apoptosis. Sem. Cancer Biol. 6, 3–16, (1995).

    Article  CAS  Google Scholar 

  46. Snow, M.H.L. & Tam, P.P.L. Is compensatory growth a complicating factor in mouse teratology? Nature 279, 555–557 (1979).

    Article  CAS  Google Scholar 

  47. Snow, M.H.L. Growth and its control in early mammalian development. Br. Med. Bull. 37, 221–226 (1981).

    Article  CAS  Google Scholar 

  48. Snow, M.H.L. Control of embryonic growth rate and fetal size in mammals. In Human Growth: A Comprehensive Treatise. (eds Falkner, F. & Tanner, J.M.) vol.3 67–82 (Plenum Press, New York, 1986).

    Chapter  Google Scholar 

  49. Raff, M.C. Social controls on cell survival and cell death. Nature 365, 397–400 (1992).

    Article  Google Scholar 

  50. Rabizadeh, S. et al. Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. natn. Acad. Sci. U.S.A. 92, 3024–3028 (1995).

    Article  CAS  Google Scholar 

  51. Lin, B. et al. Sequence of the murine Huntington disease gene: evidence for conservation, alternate splicing and polymorphism in a triplet (CCG) repeat. Hum. molec. Genet. 3, 1541–1545 (1994).

    Google Scholar 

  52. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  Google Scholar 

  53. Thomas, K.R. & Capecchi, M.R. Targeted disruption of the murine int-1 proto-oncogene resulting in servere abnormalities in midbrain and cerebellar development. Nature 346, 847–850 (1990).

    Article  CAS  Google Scholar 

  54. Liu, J.-P., Baker, J., Perkins, A.S., Robertson, E.J. & Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75, 59–72 (1993).

    CAS  Google Scholar 

  55. Robertson, E.J. Embryo-derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, (ed. Robertson, E.J.) 71–112 (IRL Press, Oxford, 1987).

    Google Scholar 

  56. Bradley, A. Production and analysis of chimeric mice. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach. (ed. Robertson, E.J.) 131–151, (IRL Press, Oxford, 1987).

    Google Scholar 

  57. Hogan, B., Beddington, R., Costantini, F & Lacy E. Manipulating the Mouse Embryo: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, New York, 1994).

    Google Scholar 

  58. Schubert, E.L. et al. A method to isolate DNA from small archival tissue samples for p53 gene analysis. Hum. Mutat. 2, 123–126 (1993).

    Article  CAS  Google Scholar 

  59. Greer, C.E., Wheeler, C.M. & Manos, M.M. Sample preparation and PCR amplification from paraffin-embedded tissues. PCR Methods Appl. 3, S113–8122 (1994).

    Article  CAS  Google Scholar 

  60. Harland, R.M. In situ hybridization: an improved whole mount method for Xenopus embryos. In Methods in Cell Biology. (eds Kay, B. K. & Peng, H. J.) 36, 675–685 (Academic Press, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeitlin, S., Liu, JP., Chapman, D. et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat Genet 11, 155–163 (1995). https://doi.org/10.1038/ng1095-155

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095-155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing