Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease

Abstract

WHIM syndrome is an immunodeficiency disease characterized by neutropenia, hypogammaglobulinemia and extensive human papillomavirus (HPV) infection1. Despite the peripheral neutropenia, bone marrow aspirates from affected individuals contain abundant mature myeloid cells, a condition termed myelokathexis2. The susceptibility to HPV is disproportionate compared with other immunodeficiency conditions, suggesting that the product of the affected gene may be important in the natural control of this infection. We describe here the localization of the gene associated with WHIM syndrome to a region of roughly 12 cM on chromosome 2q21 and the identification of truncating mutations in the cytoplasmic tail domain of the gene encoding chemokine receptor 4 (CXCR4). Haplotype and mutation analyses in a pedigree transmitting myelokathexis as an apparently autosomal recessive trait support genetic heterogeneity for this aspect of the WHIM syndrome phenotype. Lymphoblastoid cell lines carrying a 19-residue truncation mutation show significantly greater calcium flux relative to control cell lines in response to the CXCR4 ligand, SDF-1, consistent with dysregulated signaling by the mutant receptor. The identification of mutations in CXCR4 in individuals with WHIM syndrome represents the first example of aberrant chemokine receptor function causing human disease and suggests that the receptor may be important in cell-mediated immunity to HPV infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WHIM syndrome kindreds.
Figure 2: Multi-point linkage analysis with genetic markers on chromosome 2.
Figure 3: Mutation analysis of CXCR4 in individuals with WHIM syndrome.
Figure 4: Positions of CXCR4 truncation mutations in individuals with WHIM syndrome.
Figure 5: Functional and expression analysis of CXCR4 mutants.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Wetzler, M. et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am. J. Med. 89, 663–672 (1990).

    Article  CAS  PubMed  Google Scholar 

  2. Zuelzer, W.W. “Myelokathexis”—a new form of chronic granulocytopenia. Report of a Case. N. Engl. J. Med. 270, 699–704 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Mentzer, W.C. Jr., Johnston, R.B. Jr., Baehner, R.L. & Nathan, D.G. An unusual form of chronic neutropenia in a father and daughter with hypogammaglobulinaemia. Br. J. Haematol. 36, 313–322 (1977).

    Article  PubMed  Google Scholar 

  4. O'Regan, S., Newman, A.J. & Graham, R.C. 'Myelokathexis'. Neutropenia with marrow hyperplasia. Am. J. Dis. Child. 131, 655–658 (1977).

    Article  CAS  PubMed  Google Scholar 

  5. Dong, F. et al. Identification of a nonsense mutation in the granulocyte-colony-stimulating factor receptor in severe congenital neutropenia. Proc. Natl. Acad. Sci. USA 91, 4480–4484 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horwitz, M., Benson, K.F., Person, R.E., Aprikyan, A.G. & Dale, D.C. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat. Genet. 23, 433–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Dale, D.C. et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96, 2317–2322 (2000).

    CAS  PubMed  Google Scholar 

  8. Devriendt, K. et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat. Genet. 27, 313–317 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Aprikyan, A.A. et al. Myelokathexis, a congenital disorder of severe neutropenia characterized by accelerated apoptosis and defective expression of bcl-x in neutrophil precursors. Blood 95, 320–327 (2000).

    CAS  PubMed  Google Scholar 

  10. Taniuchi, S. et al. Dizygotic twin sisters with myelokathexis: mechanism of its neutropenia. Am. J. Hematol. 62, 106–111 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Hord, J.D., Whitlock, J.A., Gay, J.C. & Lukens, J.N. Clinical features of myelokathexis and treatment with hematopoietic cytokines: a case report of two patients and review of the literature. J. Pediatr. Hematol. Oncol. 19, 443–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein–coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95, 9448–9453 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tachibana, K. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Burger, J.A. et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell–derived factor-1. Blood 96, 2655–2663 (2000).

    CAS  PubMed  Google Scholar 

  18. Bohinjec, J. Myelokathexis: chronic neutropenia with hyperplastic bone marrow and hypersegmented neutrophils in two siblings. Blut 42, 191–196 (1981).

    Article  CAS  PubMed  Google Scholar 

  19. Signoret, N. et al. Differential regulation of CXCR4 and CCR5 endocytosis. J. Cell. Sci. 111, 2819–2830 (1998).

    CAS  PubMed  Google Scholar 

  20. Haribabu, B. et al. Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J. Biol. Chem. 272, 28726–28731 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Arai, H., Monteclaro, F.S., Tsou, C.L., Franci, C. & Charo, I.F. Dissociation of chemotaxis from agonist-induced receptor internalization in a lymphocyte cell line transfected with CCR2B. Evidence that directed migration does not require rapid modulation of signaling at the receptor level. J. Biol. Chem. 272, 25037–25042 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Kraft, K. et al. Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 which regulate signaling and receptor internalization. J. Biol. Chem. 11, 34408–34418 (2001).

    Article  Google Scholar 

  23. Onai, N. et al. Impairment of lymphopoiesis and myelopoiesis in mice reconstituted with bone marrow-hematopoietic progenitor cells expressing SDF-1-intrakine. Blood 96, 2074–2080 (2000).

    CAS  PubMed  Google Scholar 

  24. Gorlin, R.J. et al. WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am. J. Med. Genet. 91, 368–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lathrop, G.M., Lalouel, J.M., Julier, C. & Ott, J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am. J. Hum. Genet. 37, 482–498 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Diaz, G.A., Khan, K.T. & Gelb, B.D. The autosomal recessive Kenny–Caffey syndrome locus maps to chromosome 1q42–q43. Genomics 54, 13–18 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Francois, F. & Klotman, M.E. Phosphatidylinositol 3-kinase regulates human immunodeficiency virus type 1 replication following viral entry in primary CD4+ T lymphocytes and macrophages. J. Virol. 77, 2539–2549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the WHIM syndrome kindreds for their participation in this study, A. Au and S. Zhang for technical assistance and B. Gelb for thoughtful discussions and critical reading of the manuscript. This study was supported in part by National Institutes of Health grants to the Mount Sinai Child Health Research Center, Mount Sinai General Clinical Research Center and the Mount Sinai Flow Cytometry Shared Research Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Diaz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez, P., Gorlin, R., Lukens, J. et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34, 70–74 (2003). https://doi.org/10.1038/ng1149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing