Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion

Abstract

Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion that lengthens a glutamine segment in the novel huntingtin protein. To elucidate the molecular basis of HD, we extended the polyglutamine tract of the mouse homologue, Hdh, by targetted introduction of an expanded human HD CAG repeat, creating mutant HdhneoQ50 and HdhQ50 alleles that express reduced and wild-type levels of altered huntingtin, respectively. Mice homozygous for reduced levels displayed characteristic aberrant brain development and perinatal lethality, indicating a critical function for Hdh in neurogenesis. However, mice with normal levels of mutant huntingtin did not display these abnormalities, indicating that the expanded CAG repeat does not eliminate or detectably impair huntingtin's neurogenic function. Thus, the HD defect in man does not mimic complete or partial Hdh inactivation and appears to cause neurodegenerative disease by a gain-of-function mechanism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, J.B. & Gusella, J.F. Huntington's disease: pathogenesis and management. N. Engl. J. Med. 315, 1267–1276 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Vonsattel, J.P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neuml. 44, 559–577 (1985).

    Article  CAS  Google Scholar 

  3. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 72, 971–983 (1993).

    Article  Google Scholar 

  4. McNeil, S.M. et al. Reduced penetrance of the Huntington's disease mutation. Hum. Mol. Genet. 6, 775–779 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Rubinsztein, D.C. et al. Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am. J. Hum. Genet. 59, 16–22 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gusella, J.F., Persichetti, F. & MacDonald, M.E. The genetic defect causing Huntington's disease: repeated in other contexts. Mol. Med. 3, 238–246 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ide, K. et al. Abnormal gene product identified in Huntington's disease lymphocytes and brain. Biochem. Biophys. Res. Commun. 209, 1119–1125 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Trottier, Y. et al. Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nature Genet. 10, 104–110 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Jou, Y.S. & Myers, R.M. Evidence from antibody studies that the CAG repeat in the Huntington disease gene is expressed in the protein. Hum. Mol. Genet. 4, 465–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Sharp, A.H. et al. Widespread expression of Huntington's disease gene (IT15) protein product. Neuron. 14, 1065–1074 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 14, 1075–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Gutekunst, C.-A. et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA. 92, 8710–8714 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Persichetti, F. et al. Normal and expanded Huntington's disease alleles produce distinguishable proteins due to translation across the CAG repeat. Mol. Med. 1, 374–383 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trottier, Y. et al. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature. 378, 403–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Persichetti, F. et al. Huntington's disease CAG trinucleotide repeats in neuropathologically confirmed post-mortem brains. Neurobiol. Dis. 1, 159–166 (1995).

    Article  Google Scholar 

  16. Li, X.J. et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature. 378, 398–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Bao, J. et al. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc. Natl. Acad. Sci. USA. 93, 5037–5042 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burke, J.R. et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med. 2, 347–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Kalchman, M.A. et al. HIP1, a human homologue of S cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nature Genet. 16, 44–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Wanker, E.E. et al. HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum. Mol. Genet. 6, 487–495 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Ambrose, C.M. et al. Structure and expression of the Huntington's disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somatic Cell Mol. Genet. 20, 27–38 (1994).

    Article  CAS  Google Scholar 

  22. Duyao, M.P. et al. Homozygous inactivation of the mouse Hdh gene does not produce a Huntington's disease-like phenotype. Science. 269, 407–410 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Zeitlin, S. et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genet. 11, 155–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Myers, R.H. et al. Homozygote for Huntington's disease. Am. J. Hum. Genet. 45, 615–618 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wexler, N.S. et al. Homozygotes for Huntington's disease. Nature. 326, 194–197 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell. 81, 811–823 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. MacDonald, M.E. & Gusella, J.F. Huntington's disease: translating a CAG repeat into a pathogenic mechanism. Curr. Opin. Neurobiol. 6, 638–650 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Barnes, G.T. et al. Mouse Huntington's disease gene homolog (Hdh). Somat. Cell Mol. Genet. 20, 87–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Lin, B. et al. Sequence of the murine Huntington disease gene: evidence for conservation, alternate splicing and polymorphism in a triplet (CCG) repeat [published erratum appears in Hum. Mol. Genet. 3, 530 (1994)]. Hum. Mol. Genet. 3, 85–92 (1994).

    Google Scholar 

  30. MacDonald, M.E. et al. Targeted inactivation of the mouse Huntington disease homologue Hdh . Cold Spring Harbor Symp Quant. Biol. 61, 627–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, B. et al. Structural analysis of the 5′ region of mouse and human Huntington disease genes reveals conservation of putative promoter region and di- and trinucleotide polymorphisms. Genomics. 25, 707–715 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Stumpo, D.J. et al. MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc. Natl. Acad. Sci. USA. 92, 944–948 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, M. et al. Neural tube defects and abnormal brain development in F52-deficient mice. Proc. Natl. Acad. Sci. USA. 93, 2110–2115 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hui, C.-C. & Joyner,, A.L A mouse model of Greig cephalo-polysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the GH3 gene. Nature Genet. 3, 241–246 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Shah, V. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet. 10, 175–180 (1995).

    Article  Google Scholar 

  36. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature. 384, 368–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Gusella, J.F., Persichetti, F. & MacDonald, M.E. The genetic defect causing Huntington's disease: repeated in other contexts. Mol. Med. 3, 238–246 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bingham, P.M. et al. Stability of an expanded trinucleotide repeat in the androgen receptor gene in transgenic mice [published erratum appears in. Nature Genet. 9, 191–196 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Goldberg, Y.P. et al. Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the human Huntington disease transcript. Hum. Mol. Genet. 5, 177–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Ikeda, H. et al. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo . Nature Genet. 13, 196–202 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Burright, E.N. et al. SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell. 82, 937–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Mangiarini, L.E. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell. 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Hanks, M. et al. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2 . Science. 269, 679–682 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Warner, J.P., Barren, L.H. & Brock, D.J. A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes. Mol. Cell. Probes. 7, 235–239 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Nagy, A. et al. Derivation of completely cell culture–derived mice from early-passage embryonic stem cells. Proc Natl. Acad. Sci. USA. 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wurst, W. & Joyner, A.L. Production of targeted embryonic stem cell clones in Gene Targeting: A Practical Approach (ed. A.L. Joyner) 33–62 (Oxford University Press, Oxford, UK, 1993).

    Google Scholar 

  47. Nagy, A. & Rossant, J. Production of completely ES cell-derived fetuses. in Gene Targeting: A Practical Approach (ed. A.L. Joyner) 147–180 (Oxford University Press, Oxford, UK, 1993).

  48. Miller, M.W. & Nowakowski, R.S. Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain Res. 457, 44–52 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J., Auerbach, W., Duyao, M. et al. Huntingtin is required for neurogenesis and is not impaired by the Huntington's disease CAG expansion. Nat Genet 17, 404–410 (1997). https://doi.org/10.1038/ng1297-404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing