Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of and influence of a tick complement inhibitor on human complement component 5

An Erratum to this article was published on 01 August 2008

This article has been updated

Abstract

To provide insight into the structural and functional properties of human complement component 5 (C5), we determined its crystal structure at a resolution of 3.1 Å. The core of C5 adopted a structure resembling that of C3, with the domain arrangement at the position corresponding to the C3 thioester being very well conserved. However, in contrast to C3, the convertase cleavage site in C5 was ordered and the C345C domain flexibly attached to the core of C5. Binding of the tick C5 inhibitor OmCI to C5 resulted in stabilization of the global conformation of C5 but did not block the convertase cleavage site. The structure of C5 may render possible a structure-based approach for the design of new selective complement inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of human C5.
Figure 2: The C5d-MG8 domain interfaces in C5 and the corresponding interface in C3 and TEP.
Figure 3: The C5a anaphylatoxin in C5.
Figure 4: Conserved surface areas of C5.
Figure 5: Solution structure of C5.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 20 June 2008

    In the version of this article initially published, the numbers in the “Rsym” row in Table 1 are in the wrong columns. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Gerard, N.P. & Gerard, C. The chemotactic receptor for human C5a anaphylatoxin. Nature 349, 614–617 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Gerard, C. & Gerard, N.P. C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu. Rev. Immunol. 12, 775–808 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Gerard, N.P. et al. An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J. Biol. Chem. 280, 39677–39680 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, N.J. et al. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Podack, E.R., Esser, A.F., Biesecker, G. & Muller-Eberhard, H.J. Membrane attack complex of complement: a structural analysis of its assembly. J. Exp. Med. 151, 301–313 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Ramm, L.E., Whitlow, M.B. & Mayer, M.M. Size of the transmembrane channels produced by complement proteins C5b-8. J. Immunol. 129, 1143–1146 (1982).

    CAS  PubMed  Google Scholar 

  7. Podack, E.R., Tschoop, J. & Muller-Eberhard, H.J. Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly. J. Exp. Med. 156, 268–282 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Podack, E.R. Molecular composition of the tubular structure of the membrane attack complex of complement. J. Biol. Chem. 259, 8641–8647 (1984).

    CAS  PubMed  Google Scholar 

  9. Kinoshita, T. et al. C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J. Immunol. 141, 3895–3901 (1988).

    CAS  PubMed  Google Scholar 

  10. Takata, Y. et al. Covalent association of C3b with C4b within C5 convertase of the classical complement pathway. J. Exp. Med. 165, 1494–1507 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Vogt, W., Schmidt, G., Von Buttlar, B. & Dieminger, L. A new function of the activated third component of complement: binding to C5, an essential step for C5 activation. Immunology 34, 29–40 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nunn, M.A. et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol. 174, 2084–2091 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hepburn, N.J. et al. In vivo characterization and therapeutic efficacy of a C5-specific inhibitor from the soft tick Ornithodoros moubata. J. Biol. Chem. 282, 8292–8299 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Ricklin, D. & Lambris, J.D. Complement-targeted therapeutics. Nat. Biotechnol. 25, 1265–1275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rother, R.P., Rollins, S.A., Mojcik, C.F., Brodsky, R.A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 25, 1256–1264 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. DiScipio, R.G. The conversion of human complement component C5 into fragment C5b by the alternative-pathway C5 convertase. Biochem. J. 199, 497–504 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bramham, J. et al. Functional insights from the structure of the multifunctional C345C domain of C5 of complement. J. Biol. Chem. 280, 10636–10645 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Zuiderweg, E.R., Nettesheim, D.G., Mollison, K.W. & Carter, G.W. Tertiary structure of human complement component C5a in solution from nuclear magnetic resonance data. Biochemistry 28, 172–185 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Janssen, B.J. et al. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505–511 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Fredslund, F. et al. The structure of bovine complement component 3 reveals the basis for thioester function. J. Mol. Biol. 361, 115–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Baxter, R.H. et al. Structural basis for conserved complement factor-like function in the antimalarial protein TEP1. Proc. Natl. Acad. Sci. USA 104, 11615–11620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janssen, B.J., Christodoulidou, A., McCarthy, A., Lambris, J.D. & Gros, P. Structure of C3b reveals conformational changes that underlie complement activity. Nature 444, 213–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Wiesmann, C. et al. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444, 217–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Perkins, S.J., Smith, K.F., Nealis, A.S., Lachmann, P.J. & Harrison, R.A. Structural homologies of component C5 of human complement with components C3 and C4 by neutron scattering. Biochemistry 29, 175–180 (1990).

    CAS  PubMed  Google Scholar 

  25. Nishida, N., Walz, T. & Springer, T.A. Structural transitions of complement component C3 and its activation products. Proc. Natl. Acad. Sci. USA 103, 19737–19742 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Isaac, L. et al. Native conformations of human complement components C3 and C4 show different dependencies on thioester formation. Biochem. J. 329, 705–712 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hagemann, I.S., Miller, D.L., Klco, J.M., Nikiforovich, G.V. & Baranski, T.J. Structure of the complement factor 5a (C5a) receptor-ligand complex studied by disulfide trapping and molecular modeling. J. Biol. Chem. 283, 7763–7775 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. DiScipio, R.G. Formation and structure of the C5b-7 complex of the lytic pathway of complement. J. Biol. Chem. 267, 17087–17094 (1992).

    CAS  PubMed  Google Scholar 

  29. Sandoval, A., Ai, R., Ostresh, J.M. & Ogata, R.T. Distal recognition site for classical pathway convertase located in the C345C/netrin module of complement component C5. J. Immunol. 165, 1066–1073 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Roversi, P. et al. The structure of OMCI, a novel lipocalin inhibitor of the complement system. J. Mol. Biol. 369, 784–793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hammel, M. et al. A structural basis for complement inhibition by Staphylococcus aureus. Nat. Immunol. 8, 430–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. DiScipio, R.G., Linton, S.M. & Rushmere, N.K. Function of the factor I modules (FIMS) of human complement component C6. J. Biol. Chem. 274, 31811–31818 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. DiScipio, R.G., Smith, C.A., Muller-Eberhard, H.J. & Hugli, T.E. The activation of human complement component C5 by a fluid phase C5 convertase. J. Biol. Chem. 258, 10629–10636 (1983).

    CAS  PubMed  Google Scholar 

  34. Tschopp, J., Podack, E.R. & Muller-Eberhard, H.J. Ultrastructure of the membrane attack complex of complement: detection of the tetramolecular C9-polymerizing complex C5b-8. Proc. Natl. Acad. Sci. USA 79, 7474–7478 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bhakdi, S., Tranum-Jensen, J. & Klump, O. The terminal membrane C5b-9 complex of human complement. Evidence for the existence of multiple protease-resistant polypeptides that form the trans-membrane complement channel. J. Immunol. 124, 2451–2457 (1980).

    CAS  PubMed  Google Scholar 

  36. DiScipio, R.G., Chakravarti, D.N., Muller-Eberhard, H.J. & Fey, G.H. The structure of human complement component C7 and the C5b-7 complex. J. Biol. Chem. 263, 549–560 (1988).

    CAS  PubMed  Google Scholar 

  37. Thai, C.T. & Ogata, R.T. Complement components C5 and C7: recombinant factor I modules of C7 bind to the C345C domain of C5. J. Immunol. 173, 4547–4552 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Thai, C.T. & Ogata, R.T. Recombinant C345C and factor I modules of complement components C5 and C7 inhibit C7 incorporation into the complement membrane attack complex. J. Immunol. 174, 6227–6232 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Sacks, S.H., Chowdhury, P. & Zhou, W. Role of the complement system in rejection. Curr. Opin. Immunol. 15, 487–492 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, H. et al. Prevention of acute vascular rejection by a functionally blocking anti-C5 monoclonal antibody combined with cyclosporine. Transplantation 79, 1121–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Discipio, R.G. et al. Crystallization of human complement component C5. Acta Crystallogr. D54, 643–646 (1998).

    CAS  Google Scholar 

  42. Thai, C.T. & Ogata, R.T. Expression and characterization of the C345C/NTR domains of complement components C3 and C5. J. Immunol. 171, 6565–6573 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Petoukhov, M.V. & Svergun, D.I. Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys. J. 89, 1237–1250 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jenner, L. Structural Studies of Proteins from the α-Macroglobulin Superfamily. Thesis, Univ. Aarhus (2000).

  45. Kabsch, W. in International Tables for Crystallography, Vol. F (eds. Rossmann, M.G. & Arnold, E.) Ch. 25.22.29. (Kluwer Academic, Dordrecht, 2001).

  46. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D60, 432–438 (2004).

    CAS  Google Scholar 

  47. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M. & Paciorek, W. Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr. D59, 2023–2030 (2003).

    CAS  Google Scholar 

  48. Jones, T.A., Cowan, S., Zou, J.-Y. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  49. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998).

    CAS  Google Scholar 

  50. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D58, 1948–1954 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Kristensen for technical assistance; C. Andersen for help with figures; the staff of Elettra, Max-lab, the European Synchrotron Radiation Facility, and the Swiss Light Source for help with data collection; R. Ogata (Torrey Pines Institute for Molecular Studies) for C5-C345C; and P. Morgan (Cardiff University) for polyclonal rabbit antibody to OmCI IgG. Supported by the Danish Natural Science Research Council, the Novo Nordisk Foundation, the Carlsberg Foundation, the Danish National Research Foundation and Dansync (G.R.A., L.J., J.S.P. and L.S.-J.); and by the British Biotechnology and Biological Sciences Research Council and the National Environmental Research Council (S.M.L., P.R. and M.A.N.).

Author information

Authors and Affiliations

Authors

Contributions

F.F., crystallization, data collection, structure determination, refinement and analysis, and manuscript preparation; N.S.L. and L.S.-J., purification and analysis of C5 and C5-OmCI; P.R. and S.M.L., experimental phasing and molecular replacement; M.A.N., surface plasmon resonance experiments and preparation of OmCI; C.L.P.O. and J.S.P., SAXS analysis; L.J. and R.D., initial protein purification, crystallization and data collection; and G.R.A., conceptual design, structure analysis and manuscript preparation.

Corresponding author

Correspondence to Gregers R Andersen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredslund, F., Laursen, N., Roversi, P. et al. Structure of and influence of a tick complement inhibitor on human complement component 5. Nat Immunol 9, 753–760 (2008). https://doi.org/10.1038/ni.1625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1625

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing