Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells

Abstract

Dendritic cell (DC) maturation and migration are events critical for the initiation of immune responses. After encountering pathogens, DCs upregulate the expression of costimulatory molecules and subsequently migrate to secondary lymphoid organs. Calcium (Ca2+) entry governs the functions of many hematopoietic cell types, but the role of Ca2+ entry in DC biology remains unclear. Here we report that the Ca2+-activated nonselective cation channel TRPM4 was expressed in and controlled the Ca2+ homeostasis of mouse DCs. The absence of TRPM4, which elicited Ca2+ overload, did not influence DC maturation but did considerably impair chemokine-dependent DC migration. Our results establish TRPM4-regulated Ca2+ homeostasis as crucial for DC mobility but not maturation and emphasize that DC maturation and migration are independently regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DC populations in TRPM4-deficient and littermate control mice.
Figure 2: Impaired migration of DCs in Trpm4−/− mice.
Figure 3: A TRPM4-like current is present in Trpm4+/+ BMDCs but not in Trpm4−/− BMDCs.
Figure 4: TRPM4 is the main DC CAN channel regulating Ca2+ signaling.
Figure 5: Identical differentiation and maturation of Trpm4−/− and Trpm4+/+ BMDCs.
Figure 6: Greater mobility but less chemotaxis of Trpm4−/− iDCs.
Figure 7: PLC-β2 downregulation induced by Ca2+ overload in Trpm4−/− DCs.

Similar content being viewed by others

References

  1. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Bonasio, R. & von Andrian, U.H. Generation, migration and function of circulating dendritic cells. Curr. Opin. Immunol. 18, 503–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Banchereau, J. & Palucka, A.K. Dendritic cells as therapeutic vaccines against cancer. Nat. Rev. Immunol. 5, 296–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Naik, S.H. Demystifying the development of dendritic cell subtypes, a little. Immunol. Cell Biol. 86, 439–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Lewis, R.S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Scharenberg, A.M., Humphries, L.A. & Rawlings, D.J. Calcium signalling and cell-fate choice in B cells. Nat. Rev. Immunol. 7, 778–789 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Watkins, S.C. & Salter, R.D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23, 309–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Partida-Sanchez, S. et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity 20, 279–291 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hsu, S. et al. Fundamental Ca2+ signaling mechanisms in mouse dendritic cells: CRAC is the major Ca2+ entry pathway. J. Immunol. 166, 6126–6133 (2001).

    Article  CAS  Google Scholar 

  11. Scandella, E. et al. CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood 103, 1595–1601 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Launay, P. et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109, 397–407 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Nilius, B. et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem. 280, 6423–6433 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Prawitt, D. et al. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i . Proc. Natl. Acad. Sci. USA 100, 15166–15171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Vennekens, R. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol. 8, 312–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Macatonia, S.E., Knight, S.C., Edwards, A.J., Griffiths, S. & Fryer, P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J. Exp. Med. 166, 1654–1667 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Clapham, D.E. SnapShot: mammalian TRP channels. Cell 129, 220 (2007).

    Article  PubMed  Google Scholar 

  19. Demion, M., Bois, P., Launay, P. & Guinamard, R. TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc. Res. 73, 531–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Floto, R.A. et al. Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science 314, 454–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Sanchez-Sanchez, N. et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood 104, 619–625 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Pinheiro da Silva, F. et al. CD16 promotes Escherichia coli sepsis through an FcRγ inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nat. Med. 13, 1368–1374 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. MacAry, P.A. et al. HSP70 peptide binding mutants separate antigen delivery from dendritic cell stimulation. Immunity 20, 95–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hubbard, K.B. & Hepler, J.R. Cell signalling diversity of the Gqα family of heterotrimeric G proteins. Cell. Signal. 18, 135–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. de Gorter, D.J. et al. Bruton's tyrosine kinase and phospholipase Cγ2 mediate chemokine-controlled B cell migration and homing. Immunity 26, 93–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Macian, F., Im, S.H., Garcia-Cozar, F.J. & Rao, A. T-cell anergy. Curr. Opin. Immunol. 16, 209–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Donnadieu, E., Bismuth, G. & Trautmann, A. The intracellular Ca2+ concentration optimal for T cell activation is quite different after ionomycin or CD3 stimulation. Pflugers Arch. 429, 546–554 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Bhakta, N.R., Oh, D.Y. & Lewis, R.S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol. 6, 143–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Randolph, G.J., Ochando, J. & Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26, 293–316 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez-Sanchez, N., Riol-Blanco, L. & Rodriguez-Fernandez, J.L. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J. Immunol. 176, 5153–5159 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ullrich, N.D. et al. Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37, 267–278 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Lindquist, R.L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mailliard, R.B. et al. α-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 64, 5934–5937 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Ten Brinke, A., Karsten, M.L., Dieker, M.C., Zwaginga, J.J. & van Ham, S.M. The clinical grade maturation cocktail monophosphoryl lipid A plus IFNγ generates monocyte-derived dendritic cells with the capacity to migrate and induce Th1 polarization. Vaccine 25, 7145–7152 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Del Prete, A. et al. Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function. Blood 109, 626–631 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.Y. Lin (ABgenomics) and B. Koller (University of North Carolina) for help with generation of Trpm4−/−mice; C.S. Zuker (University of California, San Diego) for Trpm5−/− mice; E. Ferrary for help with the patch-clamp setup; M. Benhamou and U. Blank for advice and critical reading of the manuscript; and J. Bex, A. Bouhalfaïa and E. Couchi for help in animal care. Supported by the Association pour la Recherche sur le Cancer (G.B.), Institut National de la Santé et de la Recherche Médicale (M.D. and P.L.), Ministère de l'Enseignement Supérieur et de la Recherche, Université Paris 7 (N.S.), Fondation pour la Recherche Médicale (T.L. and P.L.) and Action Concertée Incitative Jeunes Chercheurs (P.L.).

Author information

Authors and Affiliations

Authors

Contributions

G.B. and I.C.M. were responsible for all experiments involving in vivo analysis of Trpm4−/− and Trpm5−/− mice; M.D. did the electrophysiological experiments in the whole-cell configuration; R.G. did the electrophysiological experiments in the 'inside-out' configuration; G.B. and M.D. did Ca2+ imaging; G.B. did the Transwell assays; M.D. did the time-lapse experiments; T.L. contributed to biochemical experiments; N.S. was responsible for quantitative RT-PCR; G.B. and N.S. were responsible for genotyping of mice; J.-P.K. was responsible for the generation of Trpm4−/− mice, critical reading and comments; R.C.M. and F.V. provided experimental guidance; all authors critically reviewed and contributed to the manuscript; and P.L. directed and supervised all aspects of the study and the writing and editing of the manuscript.

Corresponding author

Correspondence to Pierre Launay.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Table 1 and Methods (PDF 1219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbet, G., Demion, M., Moura, I. et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9, 1148–1156 (2008). https://doi.org/10.1038/ni.1648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing