Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation

Abstract

Chronic inflammation has been strongly associated with tumor progression, but the underlying mechanisms remain elusive. Here we demonstrate that E3 ligase Itch and deubiquitinase Cyld formed a complex via interaction through 'WW-PPXY' motifs. The Itch-Cyld complex sequentially cleaved Lys63-linked ubiquitin chains and catalyzed Lys48-linked ubiquitination on the kinase Tak1 to terminate inflammatory signaling via tumor necrosis factor. Reconstitution of wild-type Cyld but not the mutant Cyld(Y485A), which cannot associate with Itch, blocked sustained Tak1 activation and proinflammatory cytokine production by Cyld−/− bone marrow–derived macrophages. Deficiency in Itch or Cyld led to chronic production of tumor-promoting cytokines by tumor-associated macrophages and aggressive growth of lung carcinoma. Thus, we have identified an Itch-Cyld–mediated regulatory mechanism in innate inflammatory cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Itch−/− and Cyld−/− mice develop more growth and metastasis of LLC.
Figure 2: Itch and Cyld form a complex via interaction through PPXY motif.
Figure 3: Itch and Cyld sequentially cleave K63-linked ubiquitination and catalyzes K48-linked ubiquitination to deactivate Tak1.
Figure 4: Itch-mediated polyubiquitination leads to Tak1 degradation.
Figure 5: Sustained Tak1 activation leads to chronic production of inflammatory cytokines by Itch−/− and Cyld−/− BMDMs.
Figure 6: Inhibiting Tak1 activation diminishes the enhanced inflammatory cytokine production of Itch−/− and Cyld−/− BMDMs.
Figure 7: Ligase activity of Itch, deubiquitinating activity of Cyld and Cyld-Itch interaction are necessary for termination of TNF-induced Tak1 activation.
Figure 8: Reconstitution of Cyld−/− BMDMs with wild-type 'rescues' defects in termination of Tak1 activation and chronic production of inflammatory cytokines but reconstitution with Cyld(Y485A) does not.

Similar content being viewed by others

References

  1. Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  Google Scholar 

  2. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  Google Scholar 

  3. Takahashi, H., Ogata, H., Nishigaki, R., Broide, D.H. & Karin, M. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell 17, 89–97 (2010).

    Article  CAS  Google Scholar 

  4. Moghaddam, S.J. et al. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model. Am. J. Respir. Cell Mol. Biol. 40, 443–453 (2009).

    Article  CAS  Google Scholar 

  5. Van den Heuvel, M.M., Burgers, S.A. & van Zandwijk, N. Immunotherapy in non-small-cell lung carcinoma: from inflammation to vaccination. Clin. Lung Cancer 10, 99–105 (2009).

    Article  CAS  Google Scholar 

  6. Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  Google Scholar 

  7. Lin, W.W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117, 1175–1183 (2007).

    Article  CAS  Google Scholar 

  8. Venuprasad, K. Cbl-b and itch: key regulators of peripheral T-cell tolerance. Cancer Res. 70, 3009–3012 (2010).

    Article  CAS  Google Scholar 

  9. Malynn, B.A. & Ma, A. Ubiquitin makes its mark on immune regulation. Immunity 33, 843–852 (2010).

    Article  CAS  Google Scholar 

  10. Venuprasad, K. et al. Convergence of Itch-induced ubiquitination with MEKK1-JNK signaling in Th2 tolerance and airway inflammation. J. Clin. Invest. 116, 1117–1126 (2006).

    Article  CAS  Google Scholar 

  11. Venuprasad, K. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat. Immunol. 9, 245–253 (2008).

    Article  CAS  Google Scholar 

  12. Perry, W.L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat. Genet. 18, 143–146 (1998).

    Article  CAS  Google Scholar 

  13. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  Google Scholar 

  14. Melino, G. et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer. Cell Death Differ. 15, 1103–1112 (2008).

    Article  CAS  Google Scholar 

  15. Massoumi, R. Ubiquitin chain cleavage: CYLD at work. Trends Biochem. Sci. 35, 392–399 (2010).

    Article  CAS  Google Scholar 

  16. Jono, H. et al. NF-κB is essential for induction of CYLD, the negative regulator of NF-κB: evidence for a novel inducible autoregulatory feedback pathway. J. Biol. Chem. 279, 36171–36174 (2004).

    Article  CAS  Google Scholar 

  17. Reiley, W., Zhang, M. & Sun, S.C. Negative regulation of JNK signaling by the tumor suppressor CYLD. J. Biol. Chem. 279, 55161–55167 (2004).

    Article  CAS  Google Scholar 

  18. Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell 125, 665–677 (2006).

    Article  CAS  Google Scholar 

  19. Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003).

    Article  CAS  Google Scholar 

  20. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  Google Scholar 

  21. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  Google Scholar 

  22. Zhang, J. et al. Impaired regulation of NF-κB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J. Clin. Invest. 116, 3042–3049 (2006).

    Article  CAS  Google Scholar 

  23. Reiley, W.W. et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J. Exp. Med. 204, 1475–1485 (2007).

    Article  CAS  Google Scholar 

  24. Lim, J.H. et al. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity 27, 349–360 (2007).

    Article  CAS  Google Scholar 

  25. Lim, J.H. et al. Tumor suppressor CYLD acts as a negative regulator for non-typeable Haemophilus influenza-induced inflammation in the middle ear and lung of mice. PLoS ONE 2, e1032 (2007).

    Article  Google Scholar 

  26. Zhong, S., Fields, C.R., Su, N., Pan, Y.X. & Robertson, K.D. Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 26, 2621–2634 (2007).

    Article  CAS  Google Scholar 

  27. Chang, L. et al. The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIP(L) turnover. Cell 124, 601–613 (2006).

    Article  CAS  Google Scholar 

  28. Hayden, M.S. & Ghosh, S. Shared principles in NF-κB signaling. Cell 132, 344–362 (2008).

    Article  CAS  Google Scholar 

  29. Fan, Y. et al. Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor α- and interleukin-1β-induced IKK/NF-κB and JNK/AP-1 activation. J. Biol. Chem. 285, 5347–5360 (2010).

    Article  CAS  Google Scholar 

  30. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  Google Scholar 

  31. Broglie, P., Matsumoto, K., Akira, S., Brautigan, D.L. & Ninomiya-Tsuji, J. Transforming growth factor β-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J. Biol. Chem. 285, 2333–2339 (2010).

    Article  CAS  Google Scholar 

  32. Kajino, T. et al. Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J. Biol. Chem. 281, 39891–39896 (2006).

    Article  CAS  Google Scholar 

  33. Takaesu, G. et al. Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol. Cell. Biol. 21, 2475–2484 (2001).

    Article  CAS  Google Scholar 

  34. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat. Immunol. 9, 254–262 (2008).

    Article  CAS  Google Scholar 

  35. Peng, D.J. et al. Noncanonical K27-linked polyubiquitination of TIEG1 regulates Foxp3 expression and tumor growth. J. Immunol. 186, 5638–5647 (2011).

    Article  CAS  Google Scholar 

  36. Conze, D.B. et al. Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo. Mol. Cell. Biol. 25, 3348–3356 (2005).

    Article  CAS  Google Scholar 

  37. Stegmeier, F. et al. The tumor suppressor CYLD regulates entry into mitosis. Proc. Natl. Acad. Sci. USA 104, 8869–8874 (2007).

    Article  CAS  Google Scholar 

  38. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  39. Harhaj, E.W. & Dixit, V.M. Deubiquitinases in the regulation of NF-κB signaling. Cell Res. 21, 22–39 (2011).

    Article  CAS  Google Scholar 

  40. Ninomiya-Tsuji, J. et al. A resorcylic acid lactone, 5Z-7-oxozeaenol, prevents inflammation by inhibiting the catalytic activity of TAK1 MAPK kinase kinase. J. Biol. Chem. 278, 18485–18490 (2003).

    Article  CAS  Google Scholar 

  41. Holtmann, H. et al. The MAPK kinase kinase TAK1 plays a central role in coupling the interleukin-1 receptor to both transcriptional and RNA-targeted mechanisms of gene regulation. J. Biol. Chem. 276, 3508–3516 (2001).

    Article  CAS  Google Scholar 

  42. Bhoj, V.G. & Chen, Z.J. Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437 (2009).

    Article  CAS  Google Scholar 

  43. Shembade, N., Pujari, R., Harhaj, N.S., Abbott, D.W. & Harhaj, E.W. The kinase IKKα inhibits activation of the transcription factor NF-κB by phosphorylating the regulatory molecule TAX1BP1. Nat. Immunol. 12, 834–843 (2011).

    Article  CAS  Google Scholar 

  44. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255–265 (2004).

    Article  CAS  Google Scholar 

  45. Qiao, G. et al. T-cell receptor-induced NF-κB activation is negatively regulated by E3 ubiquitin ligase Cbl-b. Mol. Cell. Biol. 28, 2470–2480 (2008).

    Article  CAS  Google Scholar 

  46. Karin, M., Yamamoto, Y. & Wang, Q.M. The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17–26 (2004).

    Article  CAS  Google Scholar 

  47. Fanucchi, M.P. et al. Randomized phase II study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 24, 5025–5033 (2006).

    Article  CAS  Google Scholar 

  48. Davies, A.M. et al. Bortezomib plus gemcitabine/carboplatin as first-line treatment of advanced non-small cell lung cancer: a phase II Southwest Oncology Group Study (S0339). J. Thorac. Oncol. 4, 87–92 (2009).

    Article  Google Scholar 

  49. Greten, F.R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918–931 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W.C. Hahn (Dana-Farber Cancer Institute, Boston) for Myc-Cyld; J. Ashwell (US National Cancer Institute) for HA-tagged TRAF2Δ; A. Raz (Karmanos Cancer Institute) for pET30a; and Y.-C.M. Kong and R. Mathur for discussions. Supported by the US National Cancer Institute (1RC1CA146576-01 to K.V.).

Author information

Authors and Affiliations

Authors

Contributions

N.A., M.Z. and I.S. did the experiments and analyzed data; L.P. assisted with in vivo tumor studies; W.-Z.W. assisted in manuscript preparation; C.R. and R.F. provided critical reagents and mouse model; R.M. provided critical mouse model and assisted in manuscript preparation; and K.V. designed the experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to K Venuprasad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, N., Zeng, M., Sinha, I. et al. The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 12, 1176–1183 (2011). https://doi.org/10.1038/ni.2157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2157

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer