Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells

Abstract

The transcription factor Foxp3 participates dominantly in the specification and function of Foxp3+CD4+ regulatory T cells (Treg cells) but is neither strictly necessary nor sufficient to determine the characteristic Treg cell signature. Here we used computational network inference and experimental testing to assess the contribution of other transcription factors to this. Enforced expression of Helios or Xbp1 elicited distinct signatures, but Eos, IRF4, Satb1, Lef1 and GATA-1 elicited exactly the same outcome, acting in synergy with Foxp3 to activate expression of most of the Treg cell signature, including key transcription factors, and enhancing occupancy by Foxp3 at its genomic targets. Conversely, the Treg cell signature was robust after inactivation of any single cofactor. A redundant genetic switch thus 'locked in' the Treg cell phenotype, a model that would account for several aspects of Treg cell physiology, differentiation and stability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Computational prediction of transcription factors in control of the Treg cell signature.
Figure 2: Validity of the predicted Foxp3 targets.
Figure 3: Transcriptional induction of genes of the Treg cell signature by Foxp3 and other transcription factors.
Figure 4: Mechanistic effect of Foxp3 cofactors.
Figure 5: Genome-wide analysis of Foxp3.
Figure 6: Mathematical modeling of a 'self-locking' network.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Josefowicz, S.Z., Lu, L.F., Rudensky, A.Y. & Regulatory, T. Cells: Mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Curotto de Lafaille, M.A. & Lafaille, J.J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Duarte, J.H. et al. Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur. J. Immunol. 39, 948–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Murai, M. et al. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10, 1178–1184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rubtsov, Y.P. et al. Stability of the regulatory T cell lineage in vivo. Science 329, 1667–1671 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. USA 106, 1903–1908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill, J.A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Feuerer, M., Hill, J.A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Vignali, D.A., Collison, L.W. & Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ziegler, S.F. FOXP3: of mice and men. Annu. Rev. Immunol. 24, 209–226 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    CAS  PubMed  Google Scholar 

  17. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Lin, W. et al. Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8, 359–368 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Otsubo, K. et al. Identification of FOXP3-negative regulatory T-like (CD4+CD25+CD127low) cells in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Clin. Immunol. 141, 111–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197–1209 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Pan, F. et al. Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325, 1142–1146 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beyer, M. et al. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat. Immunol. 12, 898–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi, L.Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dang, E.V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, Y., Souabni, A., Flavell, R.A. & Wan, Y.Y. An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo. J. Immunol. 185, 5983–5992 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Gardner, T.S. & Faith, J.J. Reverse-engineering transcription control networks. Phys. Life Rev. 2, 65–88 (2010).

    Article  Google Scholar 

  33. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Battle, A., Segal, E. & Koller, D. Probabilistic discovery of overlapping cellular processes and their regulation. J. Comput. Biol. 12, 909–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Faith, J.J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thornton, A.M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Yu, C. et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195, 1387–1395 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, A.H., Scapa, E.F., Cohen, D.E. & Glimcher, L.H. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320, 1492–1496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cai, Q. et al. Helios deficiency has minimal impact on T cell development and function. J. Immunol. 183, 2303–2311 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Giraud, M. et al. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc. Natl. Acad. Sci. USA 109, 535–540 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Johnson, A.D. et al. λ Repressor and cro—components of an efficient molecular switch. Nature 294, 217–223 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Pittenger, C. & Kandel, E. A genetic switch for long-term memory. C.R. Acad. Sci. III 321, 91–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Iliopoulos, D., Hirsch, H.A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Young, R.A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huehn, J., Polansky, J.K. & Hamann, A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat. Rev. Immunol. 9, 83–89 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Burchill, M.A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28, 112–121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill, J.A. et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity 29, 758–770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Samstein and A. Rudensky for the unpublished ChIP-seq data; S. Smale (University of California, Los Angeles) for mouse cDNA encoding Helios; M. Calderwood and the Center for Cancer Systems Biology for expression cDNA; P. Rahl for advice on ChIP-Seq; J. Ericson, S. Davis, H. Paik and R. Cruse for genomic data analysis; H. Chen and Q. Cai for experimental support; and J. LaVecchio and G. Buruzala for sorting. This work benefited from public data generated by the Immunological Genome Project consortium. Supported by the US National Institutes of Health (AI051530 to C.B. and D.M.; AI072073 to C.B., D.M. and J.C.; training grant T32 DK7260 for support of M.S.F.; and 3R24AI072073-03S1 for support of A.E.), GlaxoSmithKline, the Damon Runyon Cancer Research Foundation (S.H.), the American Diabetes Association (7-07-BETA-14 to W.F.) and the Canadian Institutes of Health Research (J.H.).

Author information

Authors and Affiliations

Authors

Contributions

W.F., A.E., T.L., M.S.F., J.A.H., S.A., J.J.C., D.M. and C.B. designed experiments; W.F., J.A.H., S.H., M.S.F. and R.G. did experiments; A.E. and T.L. did computation; L.G., S.C., P.K. and D.R. provided mice and advice; and W.F., A.E., T.L., J.A.H., R.G., M.S.F., J.J.C., D.M. and C.B. analyzed data and wrote manuscript.

Corresponding authors

Correspondence to Diane Mathis or Christophe Benoist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Note (PDF 2747 kb)

Supplementary Table 1

Cell samples use for CLR prediction. (XLSX 16 kb)

Supplementary Table 2

CLR predicted TFs and the number of genes they influence in the Treg signature. (XLSX 13 kb)

Supplementary Table 3

Expression of Treg signature genes in Tconv cells transduced with different retroviruses, as indicated. (XLSX 70 kb)

Supplementary Table 4

Expression of endogenous TFs in transduced cells (FoldChange from control). (XLSX 11 kb)

Supplementary Table 5

Summary and primary data for ChIP-seq. (XLSX 9 kb)

Supplementary Table 6

Genome-wide FoxP3 binding in Tconv cells transduced with FoxP3, or FoxP3+GATA1. (XLSX 1187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, W., Ergun, A., Lu, T. et al. A multiply redundant genetic switch 'locks in' the transcriptional signature of regulatory T cells. Nat Immunol 13, 972–980 (2012). https://doi.org/10.1038/ni.2420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing