Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor

This article has been updated

Abstract

Hematopoietic transcription factors are essential for specifying cell fates; however, the function of cytokines in such developmental decisions is unresolved. We demonstrate here that haploinsufficiency for the gene encoding the transcription factor PU.1 partially suppresses the neutropenia of mice deficient in granulocyte colony-stimulating factor. This suppression was due to an increase in granulocytic progenitors and a diminution of monocytic progenitors. With PU.1+/− ES cells as well as PU.1−/− hematopoietic progenitors, we show that higher expression of PU.1 is needed for macrophage than for neutrophil development. In a PU.1−/− progenitor cell line, in which graded activity of PU.1 regulates neutrophil versus macrophage development, granulocyte colony-stimulating factor signaling supported the neutrophil cell fate by increasing expression of the neutrophil transcription factor C/EBPα in relation to expression of PU.1. Collectively, these results indicate that cytokines can promote cell fate decisions by altering the relative concentrations of lineage-determining transcriptional regulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of one allele of PU.1 increases the percentage of CD11b+Gr-1hi cells in the bone marrow of Csf3−/− mice.
Figure 2: Loss of one allele of PU.1 from Csf3−/− mice results in an increase of granulocytic colonies detected in bone marrow and fetal liver.
Figure 3: PU.1+/− embryoid bodies (EBs) generate more granulocytic colonies (CFU-G) and fewer macrophage colonies (CFU-M) than do PU.1+/+ EBs.
Figure 4: High and low PU.1 expression directs distinct myeloid cell fates.
Figure 5: G-CSF treatment of an IL-3-dependent PUER progenitor cell line affects myeloid differentiation induced by PU.1 activity.
Figure 6: C/EBPα antagonizes PU.1-induced macrophage differentiation.

Similar content being viewed by others

Change history

  • 15 September 2003

    appended AOP PDF with erratum (will be corrected for print issue) and placed footnote in SGML where references to Fig. 4a occur

References

  1. Metcalf, D. Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 92, 345–347 (1998).

    CAS  PubMed  Google Scholar 

  2. Enver, T., Heyworth, C.M. & Dexter, T.M. Do stem cells play dice? Blood 92, 348–351 (1998).

    CAS  Google Scholar 

  3. Cantor, A.B. & Orkin, S.H. Hematopoietic development: a balancing act. Curr. Opin. Genet. Dev. 11, 513–519 (2001).

    Article  CAS  Google Scholar 

  4. Wiktor-Jedrzejczak, W. et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828–4832 (1990).

    Article  CAS  Google Scholar 

  5. Yoshida, H. et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345, 442–444 (1990).

    Article  CAS  Google Scholar 

  6. Stanley, E. et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 91, 5592–5596 (1994).

    Article  CAS  Google Scholar 

  7. Lieschke, G.J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994).

    CAS  PubMed  Google Scholar 

  8. Lieschke, G.J. CSF-deficient mice—what have they taught us? Ciba Found. Symp. 204, 60–74 (1997).

    CAS  PubMed  Google Scholar 

  9. Fairbairn, L.J., Cowling, G.J., Reipert, B.M. & Dexter, T.M. Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors. Cell 74, 823–832 (1993).

    Article  CAS  Google Scholar 

  10. Shivdasani, R.A. & Orkin, S.H. The transcriptional control of hematopoiesis. Blood 87, 1025–4039 (1996).

    Google Scholar 

  11. Orkin, S.H. Diversification of haematopoietic stem cells to specific lineages. Nat. Rev. Genet. 1, 57–64 (2000).

    Article  CAS  Google Scholar 

  12. Graves, B.J. & Petersen, J.M. Specificity within the ets family of transcription factors. Adv. Cancer Res. 75, 1–55 (1998).

    Article  CAS  Google Scholar 

  13. Dahl, R., Hackenmiller, R.D. & Simon, M.C. Ets transcription factor mutations and hematopoiesis. in Hematopoiesis: A developmental approach (ed. Zon, L.I.) 391–401 (Oxford University Press, New York, 2001).

    Google Scholar 

  14. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  Google Scholar 

  15. McKercher, S.R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  Google Scholar 

  16. Nerlov, C. & Graf, T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).

    Article  CAS  Google Scholar 

  17. McIvor, Z. et al. Transient expression of PU.1 commits multipotent progenitors to a myeloid fate whereas continued expression favors macrophage over granulocyte differentiation. Exp. Hematol. 31, 39–47 (2003).

    Article  CAS  Google Scholar 

  18. DeKoter, R.P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288, 1439–1441. (2000).

    Article  CAS  Google Scholar 

  19. Pevny, L. et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260 (1991).

    Article  CAS  Google Scholar 

  20. Zhang, P. et al. PU.1 inhibits GATA-1 function and erythroid differentiation by blocking GATA-1 DNA binding. Blood 96, 2641–2648 (2000).

    CAS  Google Scholar 

  21. Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl. Acad. Sci. USA 96, 8705–8710 (1999).

    Article  CAS  Google Scholar 

  22. Kondo, M. et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407, 383–386 (2000).

    Article  CAS  Google Scholar 

  23. King, A.G., Kondo, M., Scherer, D.C. & Weissman, I.L. Lineage infidelity in myeloid cells with TCR gene rearrangement: a latent developmental potential of proT cells revealed by ectopic cytokine receptor signaling. Proc. Natl. Acad. Sci. USA 99, 4508–4513 (2002).

    Article  CAS  Google Scholar 

  24. Scott, E.W. et al. PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 6, 437–447 (1997).

    Article  CAS  Google Scholar 

  25. Olson, M.C. et al. PU.1 is not essential for early myeloid gene expression but is required for terminal myeloid differentiation. Immunity 3, 703–714 (1995).

    Article  CAS  Google Scholar 

  26. Garrett-Sinha, L.A., Dahl, R., Rao, S., Barton, K.P. & Simon, M.C. PU.1 exhibits partial functional redundancy with Spi-B, but not with Ets-1 and Elf-1. Blood 97, 2908–2912 (2001).

    Article  CAS  Google Scholar 

  27. Lagasse, E. & Weissman, I.L. Flow cytometric identification of murine neutrophils and monocytes. J. Immunol. Meth. 197, 139–150 (1996).

    Article  CAS  Google Scholar 

  28. Dahl, R., Ramirez-Bergeron, D.L., Rao, S. & Simon, M.C. Spi-B can functionally replace PU.1 in myeloid but not lymphoid development. EMBO J. 21, 2220–2230 (2002).

    Article  CAS  Google Scholar 

  29. Schaller, E. et al. Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol. Cell. Biol. 22, 8035–8043 (2002).

    Article  CAS  Google Scholar 

  30. Walsh, J.C. et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates. Immunity 17, 665–676 (2002).

    Article  CAS  Google Scholar 

  31. Pahl, H.L. et al. The proto-oncogene PU.1 regulates expression of the myeloid- specific CD11b promoter. J. Biol. Chem. 268, 5014–5020 (1993).

    CAS  PubMed  Google Scholar 

  32. Zhang, D.E. et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein α-deficient mice. Proc. Natl. Acad. Sci. USA 94, 569–574. (1997).

    Article  CAS  Google Scholar 

  33. Reddy, V.A. et al. Granulocyte inducer C/EBPα inactivates the myeloid master regulator PU.1: possible role in lineage commitment decisions. Blood 100, 483–490 (2002).

    Article  CAS  Google Scholar 

  34. Kim, J. & Feldman, R.A. Activated Fes protein tyrosine kinase induces terminal macrophage differentiation of myeloid progenitors (U937 cells) and activation of the transcription factor PU.1. Mol. Cell. Biol. 22, 1903–1918 (2002).

    Article  CAS  Google Scholar 

  35. Radomska, H.S. et al. CCAAT/enhancer binding protein α is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol. Cell. Biol. 18, 4301–4314 (1998).

    Article  CAS  Google Scholar 

  36. Friedman, A.D. Transcriptional regulation of granulocyte and monocyte development. Oncogene 21, 3377–3390 (2002).

    Article  CAS  Google Scholar 

  37. McNagny, K. & Graf, T. Making eosinophils through subtle shifts in transcription factor expression. J. Exp. Med. 195, F43–47 (2002).

    Article  CAS  Google Scholar 

  38. Lin, J.X. et al. The role of shared receptor motifs and common STAT proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2, 331–339 (1995).

    Article  CAS  Google Scholar 

  39. Panopoulos, A.D., Bartos, D., Zhang, L. & Watowich, S.S. Control of myeloid-specific integrin αMβ2 (CD11b/CD18) expression by cytokines is regulated by STAT3-dependent activation of PU.1. J. Biol. Chem. 277, 19001–19007 (2002).

    Article  CAS  Google Scholar 

  40. Shibata, Y. et al. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 15, 557–567 (2001).

    Article  CAS  Google Scholar 

  41. DeKoter, R.P., Walsh, J.C. & Singh, H. PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors. EMBO J. 17, 4456–4468 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Reiner and K.C. Dahl for critically reading the manuscript. We thank the following for providing reagents: W. Pear, M. Lazar, R. Feldman and N. Berliner. This work was supported by the Abramson Family Cancer Research Institute (R.D. and M.C.S.) and the Howard Hughes Medical Institute (R.D., D.L., P.L., S.R.I., H.S. and M.C.S.), and National Institutes of Health grants 5RO1HL052094 (M.C.S.), 5T32GM07151 (J.C.W.) and 5T32HL07237 (J.C.W.) M.C.S. and H.S. are investigators of the Howard Hughes Medical Institute.

*Note: In the version of this article originally published online, the label for Figure 4a was incorrect. It should read PU.1-/-. This error has been corrected for the HTML and print versions of the article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harinder Singh or M Celeste Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, R., Walsh, J., Lancki, D. et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPα ratio and granulocyte colony-stimulating factor. Nat Immunol 4, 1029–1036 (2003). https://doi.org/10.1038/ni973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing