Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cellular and signaling networks linking the immune system and metabolism in disease

Abstract

It is now recognized that obesity is driving the type 2 diabetes epidemic in Western countries. Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes and cardiovascular disease, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various cellular and signaling networks that participate in linking the immune and metabolic systems together have contributed to understanding of the pathogenesis of metabolic diseases and may also inform new therapeutic strategies based on immunomodulation. Here we discuss how these various networks underlie the etiology of the inflammatory component of insulin resistance, with a particular focus on the central roles of macrophages in adipose tissue and liver.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of integrative physiology.
Figure 2: Immune cells mediate inflammation in adipose tissue.
Figure 3: Inflammatory signaling pathways involved in the development of insulin resistance.
Figure 4: Signaling pathways that potentiate or reduce inflammatory signaling.

Similar content being viewed by others

References

  1. Kahn, S.E., Hull, R.L. & Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hupfeld, C.J., Courtney, H. & Olefsky, J.M. in Endocrinology 6th edn, Vol. 1 (eds. Jameson, J.L. & De Groot, L.J.) Ch. 41 (Saunders, 2010).

  3. Bastard, J.P. et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 17, 4–12 (2006).

    CAS  PubMed  Google Scholar 

  4. Gesta, S., Tseng, Y.H. & Kahn, C.R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    CAS  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention. US National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States. (US Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, 2011).

  6. Heilbronn, L.K. & Campbell, L.V. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr. Pharm. Des. 14, 1225–1230 (2008).

    CAS  PubMed  Google Scholar 

  7. Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Oliver, E., McGillicuddy, F., Phillips, C., Toomey, S. & Roche, H.M. The role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proc. Nutr. Soc. 69, 232–243 (2010).

    CAS  PubMed  Google Scholar 

  9. Schenk, S., Saberi, M. & Olefsky, J.M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williamson, R.T. On the treatment of glycosuria and diabetes mellitus with sodium salicylate. BMJ 1, 760–762 (1901).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Feingold, K.R. et al. Effect of tumor necrosis factor (TNF) on lipid metabolism in the diabetic rat. Evidence that inhibition of adipose tissue lipoprotein lipase activity is not required for TNF-induced hyperlipidemia. J. Clin. Invest. 83, 1116–1121 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Grunfeld, C. & Feingold, K.R. The metabolic effects of tumor necrosis factor and other cytokines. Biotherapy 3, 143–158 (1991).

    CAS  PubMed  Google Scholar 

  13. Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Uysal, K.T., Wiesbrock, S.M., Marino, M.W. & Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    CAS  PubMed  Google Scholar 

  15. Yin, M.-J., Yamamoto, Y. & Gaynor, R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(κ)B kinase-β. Nature 396, 77–80 (1998).

    CAS  PubMed  Google Scholar 

  16. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkß. Science 293, 1673–1677 (2001).

    CAS  PubMed  Google Scholar 

  17. Shoelson, S.E., Lee, J. & Yuan, M. Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord. 27 (suppl. 3), S49–S52 (2003).

    CAS  PubMed  Google Scholar 

  18. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS  PubMed  Google Scholar 

  19. Tuncman, G. et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 103, 10741–10746 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6, 386–397 (2007).

    CAS  PubMed  Google Scholar 

  21. Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112, 1821–1830 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weisberg, S.P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183–190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Itani, S.I., Ruderman, N.B., Schmieder, F. & Boden, G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C and IκB-α. Diabetes 51, 2005–2011 (2002).

    CAS  PubMed  Google Scholar 

  25. Bandyopadhyay, G.K., Yu, J.G., Ofrecio, J. & Olefsky, J.M. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54, 2351–2359 (2005).

    CAS  PubMed  Google Scholar 

  26. Olefsky, J.M. & Glass, C.K. Macrophages, inflammation and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    CAS  PubMed  Google Scholar 

  27. Gastaldelli, A. et al. Metabolic effects of visceral fat accumulation in type 2 diabetes. J. Clin. Endocrinol. Metab. 87, 5098–5103 (2002).

    CAS  PubMed  Google Scholar 

  28. Tran, T.T., Yamamoto, Y., Gesta, S. & Kahn, C.R. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7, 410–420 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Rourke, R.W. et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-γ in inflammation in human adipose tissue. Int. J. Obes. (Lond.) 33, 978–990 (2009).

    CAS  Google Scholar 

  30. Nielsen, S., Guo, Z., Johnson, C.M., Hensrud, D.D. & Jensen, M.D. Splanchnic lipolysis in human obesity. J. Clin. Invest. 113, 1582–1588 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Christiansen, T., Richelsen, B. & Bruun, J.M. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int. J. Obes. (Lond.) 29, 146–150 (2005).

    CAS  Google Scholar 

  32. Gerhardt, C.C., Romero, I.A., Cancello, R., Camoin, L. & Strosberg, A.D. Chemokines control fat accumulation and leptin secretion by cultured human adipocytes. Mol. Cell. Endocrinol. 175, 81–92 (2001).

    CAS  PubMed  Google Scholar 

  33. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    CAS  PubMed  Google Scholar 

  34. Weisberg, S.P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    CAS  PubMed  Google Scholar 

  35. Chen, A. et al. Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes. Res. 13, 1311–1320 (2005).

    CAS  PubMed  Google Scholar 

  36. Smith, M.J., Ford-Hutchinson, A.W. & Bray, M.A. Leukotriene B: a potential mediator of inflammation. J. Pharm. Pharmacol. 32, 517–518 (1980).

    CAS  PubMed  Google Scholar 

  37. Chakrabarti, S.K. et al. Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese Zucker rats. Am. J. Physiol. Endocrinol. Metab. 300, E175–E187 (2011).

    CAS  PubMed  Google Scholar 

  38. Spite, M. et al. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J. Immunol. 187, 1942–1949 (2011).

    CAS  PubMed  Google Scholar 

  39. Imai, T. et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521–530 (1997).

    CAS  PubMed  Google Scholar 

  40. Digby, J.E. et al. Anti-inflammatory effects of nicotinic acid in adipocytes demonstrated by suppression of fractalkine, RANTES and MCP-1 and upregulation of adiponectin. Atherosclerosis 209, 89–95 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zeyda, M. et al. Newly identified adipose tissue macrophage populations in obesity with distinct chemokine and chemokine receptor expression. Int. J. Obes. (Lond.) 34, 1684–1694 (2010).

    CAS  Google Scholar 

  42. Shah, R. et al. Gene profiling of human adipose tissue during evoked inflammation in vivo. Diabetes 58, 2211–2219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shah, R. et al. Fractalkine is a novel human adipochemokine associated with type 2 diabetes. Diabetes 60, 1512–1518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Galkina, E. & Ley, K. Leukocyte influx in atherosclerosis. Curr. Drug Targets 8, 1239–1248 (2007).

    CAS  PubMed  Google Scholar 

  45. Surmi, B.K., Webb, C.D., Ristau, A.C. & Hasty, A.H. Absence of macrophage inflammatory protein-1{α} does not impact macrophage accumulation in adipose tissue of diet-induced obese mice. Am. J. Physiol. Endocrinol. Metab. 299, E437–E445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ouchi, N., Parker, J.L., Lugus, J.J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lumeng, C.N., Deyoung, S.M., Bodzin, J.L. & Saltiel, A.R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16–23 (2007).

    CAS  PubMed  Google Scholar 

  48. Nguyen, M.T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007).

    CAS  PubMed  Google Scholar 

  49. Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Prieur, X. et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60, 797–809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jenkins, S.J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Fujisaka, S. et al. Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, P. et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Oh, D.Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bouhlel, M.A. et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6, 137–143 (2007).

    CAS  PubMed  Google Scholar 

  57. Arkan, M.C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    CAS  PubMed  Google Scholar 

  58. Mauer, J. et al. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. PLoS Genet. 6, e1000938 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. Furuhashi, M. et al. Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J. Clin. Invest. 118, 2640–2650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hevener, A.L. et al. Macrophage PPAR-γ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658–1669 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Odegaard, J.I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao, Z. et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem. 277, 48115–48121 (2002).

    CAS  PubMed  Google Scholar 

  63. Gao, Z., Zuberi, A., Quon, M.J., Dong, Z. & Ye, J. Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J. Biol. Chem. 278, 24944–24950 (2003).

    CAS  PubMed  Google Scholar 

  64. Ozes, O.N. et al. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN antagonizes tumor necrosis factor inhibition of insulin signaling through insulin receptor substrate-1. Proc. Natl. Acad. Sci. USA 98, 4640–4645 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, D.F. et al. IKKβ suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455 (2007).

    CAS  PubMed  Google Scholar 

  66. Emanuelli, B. et al. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J. Biol. Chem. 275, 15985–15991 (2000).

    CAS  PubMed  Google Scholar 

  67. Kawazoe, Y. et al. Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J. Exp. Med. 193, 263–269 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ueki, K., Kondo, T. & Kahn, C.R. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol. Cell. Biol. 24, 5434–5446 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  70. Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Stienstra, R. et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab. 12, 593–605 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E. & Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. J. Am. Med. Assoc. 286, 327–334 (2001).

    CAS  Google Scholar 

  73. Ohshima, S. et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc. Natl. Acad. Sci. USA 95, 8222–8226 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Matthews, V.B. et al. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia 53, 2431–2441 (2010).

    CAS  PubMed  Google Scholar 

  76. Frisdal, E. et al. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem. 286, 30926–30936 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tilg, H., Trehu, E., Atkins, M.B., Dinarello, C.A. & Mier, J.W. Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 83, 113–118 (1994).

    CAS  PubMed  Google Scholar 

  78. Kristiansen, O.P. & Mandrup-Poulsen, T. Interleukin-6 and diabetes: the good, the bad or the indifferent? Diabetes 54 (suppl. 2), S114–S124 (2005).

    CAS  PubMed  Google Scholar 

  79. Stephens, J.M. & Pekala, P.H. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3–L1 adipocytes by tumor necrosis factor-α. J. Biol. Chem. 266, 21839–21845 (1991).

    CAS  PubMed  Google Scholar 

  80. Ye, J. Regulation of PPARγ function by TNF-α. Biochem. Biophys. Res. Commun. 374, 405–408 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Holland, W.L. et al. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Invest. 121, 1858–1870 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Haus, J.M. et al. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58, 337–343 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dobrowsky, R.T., Kamibayashi, C., Mumby, M.C. & Hannun, Y.A. Ceramide activates heterotrimeric protein phosphatase 2A. J. Biol. Chem. 268, 15523–15530 (1993).

    CAS  PubMed  Google Scholar 

  84. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Emilsson, V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).

    CAS  PubMed  Google Scholar 

  86. Juge-Aubry, C.E. et al. Adipose tissue is a major source of interleukin-1 receptor antagonist: upregulation in obesity and inflammation. Diabetes 52, 1104–1110 (2003).

    CAS  PubMed  Google Scholar 

  87. Ouchi, N. et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329, 454–457 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Schottelius, A.J., Mayo, M.W., Sartor, R.B. & Baldwin, A.S. Jr. Interleukin-10 signaling blocks inhibitor of κB kinase activity and nuclear factor κB DNA binding. J. Biol. Chem. 274, 31868–31874 (1999).

    CAS  PubMed  Google Scholar 

  89. Kim, H.J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).

    CAS  PubMed  Google Scholar 

  90. Hong, E.G. et al. Interleukin-10 prevents diet-induced insulin resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 58, 2525–2535 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Odegaard, J.I. et al. Alternative M2 activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance. Cell Metab. 7, 496–507 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Obstfeld, A.E. et al. C–C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916–925 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Neyrinck, A.M. et al. Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochem. Biophys. Res. Commun. 385, 351–356 (2009).

    CAS  PubMed  Google Scholar 

  94. Lanthier, N. et al. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G107–G116 (2010).

    CAS  PubMed  Google Scholar 

  95. DeFronzo, R.A. et al. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30, 1000–1007 (1981).

    CAS  PubMed  Google Scholar 

  96. Frost, R.A., Nystrom, G.J. & Lang, C.H. Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R698–R709 (2002).

    CAS  PubMed  Google Scholar 

  97. Saghizadeh, M., Ong, J.M., Garvey, W.T., Henry, R.R. & Kern, P.A. The expression of TNFα by human muscle. Relationship to insulin resistance. J. Clin. Invest. 97, 1111–1116 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. De Souza, C.T. et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199 (2005).

    CAS  PubMed  Google Scholar 

  99. Münzberg, H., Flier, J.S. & Bjørbæk, C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145, 4880–4889 (2004).

    PubMed  Google Scholar 

  100. Barron, K.D. The microglial cell. A historical review. J. Neurol. Sci. 134 (suppl), 57–68 (1995).

    PubMed  Google Scholar 

  101. Hanisch, U.K. Microglia as a source and target of cytokines. Glia 40, 140–155 (2002).

    PubMed  Google Scholar 

  102. Zhang, X. et al. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ehses, J.A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007).

    CAS  PubMed  Google Scholar 

  104. Maedler, K. et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bendtzen, K. et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 232, 1545–1547 (1986).

    CAS  PubMed  Google Scholar 

  106. Donath, M.Y. & Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    CAS  PubMed  Google Scholar 

  107. Maslowski, K.M. & Mackay, C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 12, 5–9 (2011).

    CAS  PubMed  Google Scholar 

  108. Tilg, H. & Kaser, A. Gut microbiome, obesity and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shi, H. et al. TLR4 links innate immunity and fatty acid–induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Membrez, M. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 22, 2416–2426 (2008).

    CAS  PubMed  Google Scholar 

  111. Cani, P.D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  PubMed  Google Scholar 

  112. Zhang, X. et al. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes 60, 486–495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Qi, L. et al. Adipocyte CREB promotes insulin resistance in obesity. Cell Metab. 9, 277–286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sugii, S. et al. PPARγ activation in adipocytes is sufficient for systemic insulin sensitization. Proc. Natl. Acad. Sci. USA 106, 22504–22509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Abel, E.D. et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001).

    CAS  PubMed  Google Scholar 

  116. Kamei, N. et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281, 26602–26614 (2006).

    CAS  PubMed  Google Scholar 

  117. Matsusue, K. et al. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737–747 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sabio, G. et al. Role of muscle c-Jun NH2-terminal kinase 1 in obesity-induced insulin resistance. Mol. Cell. Biol. 30, 106–115 (2010).

    CAS  PubMed  Google Scholar 

  119. Brüning, J.C. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    PubMed  Google Scholar 

  120. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    CAS  PubMed  Google Scholar 

  122. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  124. Strissel, K.J. et al. T-cell recruitment and TH1 polarization in adipose tissue during diet-induced obesity in C57BL/6 mice. Obesity (Silver Spring) 18, 1918–1925 (2010).

    CAS  Google Scholar 

  125. Winer, D.A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hellman, B., Larsson, S. & Westman, S. Mast cell content and fatty acid metabolism in the epididymal fat pad of obese mice. Acta Physiol. Scand. 58, 255–262 (1963).

    CAS  PubMed  Google Scholar 

  127. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    CAS  PubMed  Google Scholar 

  130. Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    CAS  PubMed  Google Scholar 

  131. Nakamura, T. et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140, 338–348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    PubMed  PubMed Central  Google Scholar 

  133. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action and type 2 diabetes. Science 306, 457–461 (2004).

    PubMed  Google Scholar 

  134. Yang, L., Li, P., Fu, S., Calay, E.S. & Hotamisligil, G.S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rodriguez, A. et al. Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab. 3, 211–222 (2006).

    CAS  PubMed  Google Scholar 

  136. Feng, D. et al. High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60, 2134–2143 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Kabon, B. et al. Obesity decreases perioperative tissue oxygenation. Anesthesiology 100, 274–280 (2004).

    PubMed  Google Scholar 

  138. Jantsch, J. et al. Hypoxia and hypoxia-inducible factor-1 α modulate lipopolysaccharide-induced dendritic cell activation and function. J. Immunol. 180, 4697–4705 (2008).

    CAS  PubMed  Google Scholar 

  139. Jiang, C. et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60, 2484–2495 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Creely, S.J. et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 292, E740–E747 (2007).

    CAS  PubMed  Google Scholar 

  142. Lin, Y. et al. The lipopolysaccharide-activated toll-like receptor (TLR)-4 induces synthesis of the closely related receptor TLR-2 in adipocytes. J. Biol. Chem. 275, 24255–24263 (2000).

    CAS  PubMed  Google Scholar 

  143. Hundal, R.S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Goldfine, A.B. et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 152, 346–357 (2010).

    PubMed  PubMed Central  Google Scholar 

  145. Hevener, A.L. et al. Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J. Clin. Invest. 117, 1658–1669 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Pascual, G. et al. in Fatty Acids and Lipotoxicity in Obesity and Diabetes: Novartis Found. Symp. 286 (eds. Bock, G. & Goode, J.) Ch. 16 (John Wiley & Sons, 2007).

  147. Rizos, C.V., Elisaf, M.S., Mikhailidis, D.P. & Liberopoulos, E.N. How safe is the use of thiazolidinediones in clinical practice? Expert Opin. Drug Saf. 8, 15–32 (2009).

    CAS  PubMed  Google Scholar 

  148. Stanley, T.L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab. 96, E146–E150 (2011).

    CAS  PubMed  Google Scholar 

  149. Solomon, D.H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. J. Am. Med. Assoc. 305, 2525–2531 (2011).

    CAS  Google Scholar 

  150. Sauter, N.S., Schulthess, F.T., Galasso, R., Castellani, L.W. & Maedler, K. The anti-inflammatory cytokine IL-1Ra protects from high fat diet-induced hyperglycemia. Endocrinology 149, 2208–2218 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Osborn, O. et al. Treatment with an Interleukin 1β antibody improves glycemic control in diet-induced obesity. Cytokine 44, 141–148 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    CAS  PubMed  Google Scholar 

  153. van Asseldonk, E.J. et al. Treatment with anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: a randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 96, 2119–2126 (2011).

    CAS  PubMed  Google Scholar 

  154. Hanefeld, M. et al. Oral chemokine receptor 2 antagonist CCX140-B shows safety and efficacy in type 2 diabetes mellitus. Abstract no. 310-OR at the 71st American Diabetes Association Scientific Sessions (San Diego, California, 2011).

  155. Knowler, W.C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  156. Miller, G.D., Nicklas, B.J. & Fernandez, A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 7, 618–624 (2011).

    PubMed  PubMed Central  Google Scholar 

  157. Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L. & Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu, X. et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 283, 22930–22941 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Sachithanandan, N. et al. Macrophage deletion of SOCS1 increases sensitivity to LPS and palmitic acid and results in systemic inflammation and hepatic insulin resistance. Diabetes 60, 2023–2031 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kang, K. et al. Adipocyte-derived TH2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab. 7, 485–495 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Saberi, M. et al. Hematopoietic cell-specific deletion of Toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 10, 419–429 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Lesniewski, L.A. et al. Bone marrow-specific Cap gene deletion protects against high-fat diet-induced insulin resistance. Nat. Med. 13, 455–462 (2007).

    CAS  PubMed  Google Scholar 

  163. Neels, J.G., Badeanlou, L., Hester, K.D. & Samad, F. Keratinocyte-derived chemokine in obesity: expression, regulation, and role in adipose macrophage infiltration and glucose homeostasis. J. Biol. Chem. 284, 20692–20698 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Lee, S.J. et al. PKCζ-regulated inflammation in the nonhematopoietic compartment is critical for obesity-induced glucose intolerance. Cell Metab. 12, 65–77 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Kowalski, G.M. et al. Deficiency of haematopoietic-cell–derived IL-10 does not exacerbate high-fat-diet–induced inflammation or insulin resistance in mice. Diabetologia 54, 888–899 (2011).

    CAS  PubMed  Google Scholar 

  167. Féral, C.C. et al. Blockade of α4 integrin signaling ameliorates the metabolic consequences of high-fat diet-induced obesity. Diabetes 57, 1842–1851 (2008).

    PubMed  PubMed Central  Google Scholar 

  168. Hirasaka, K. et al. Deficiency of Cbl-b gene enhances infiltration and activation of macrophages in adipose tissue and causes peripheral insulin resistance in mice. Diabetes 56, 2511–2522 (2007).

    CAS  PubMed  Google Scholar 

  169. McGillicuddy, F.C. et al. Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 60, 1688–1698 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrold M Olefsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osborn, O., Olefsky, J. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18, 363–374 (2012). https://doi.org/10.1038/nm.2627

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing