Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mechanisms of resistance to therapies targeting BRCA-mutant cancers

Abstract

Synthetic lethality provides a potential mechanistic framework for the therapeutic targeting of genetic and functional deficiencies in cancers and is now being explored widely. The first clinical exemplification of synthetic lethality in cancer has been the exploitation of inhibitors of poly-(ADP-ribose) polymerase (PARP) for the treatment of cancers with defects in the BRCA1 or BRCA2 tumor suppressor proteins, which are involved in the repair of DNA damage. Although this approach has shown promise, multiple potential resistance mechanisms have been identified. In this Perspective, we discuss these mechanisms and their relevance to the development of selective therapies for BRCA-deficient cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular routes to PARP-inhibitor sensitivity and resistance.
Figure 2: Genetic concepts used in the development of anticancer therapies.
Figure 3: A suggested toolkit for monitoring resistance in the development of PARP inhibitors.

Similar content being viewed by others

References

  1. Greaves, M. & Maley, C.C. Clonal evolution in cancer. Nature 481, 306–313 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ashworth, A., Lord, C.J. & Reis-Filho, J.S. Genetic interactions in cancer progression and treatment. Cell 145, 30–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Stratton, M.R. & Rahman, N. The emerging landscape of breast cancer susceptibility. Nat. Genet. 40, 17–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. TCGA. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  5. Dobzhansky, T. Genetics of natural populations. Xiii. Recombination and variability in populations of Drosophila pseudoobscura. Genetics 31, 269–290 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W. & Friend, S.H. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Kaelin, W.G. Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Bryant, H.E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Fong, P.C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Fong, P.C. et al. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28, 2512–2519 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Audeh, M.W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Balmaña, J., Domchek, S.M., Tutt, A. & Garber, J.E. Stumbling blocks on the path to personalized medicine in breast cancer: the case of PARP inhibitors for BRCA1/2-associated cancers. Cancer Discov. 1, 29–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Lord, C.J. & Ashworth, A. The DNA damage response and cancer therapy. Nature 481, 287–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Gelmon, K.A. et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12, 852–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. McCabe, N. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Vilar, E. et al. MRE11 deficiency increases sensitivity to poly(ADP-ribose) polymerase inhibition in microsatellite unstable colorectal cancers. Cancer Res. 71, 2632–2642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mendes-Pereira, A.M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brenner, J.C. et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion–positive prostate cancer. Cancer Cell 19, 664–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brenner, J.C. et al. PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma. Cancer Res. 72, 1608–1613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Byers, L.A. et al. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov. 2, 798–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Edwards, S.L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ikeda, H. et al. Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2. Cancer Res. 63, 2688–2694 (2003).

    CAS  PubMed  Google Scholar 

  25. Swisher, E.M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barber, L.J. et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 229, 422–429 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Issaeva, N. et al. 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res. 70, 6268–6276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao, L. et al. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol. Cell 35, 534–541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bunting, S.F. et al. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol. Cell 46, 125–135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17, 688–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaspers, J.E. et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Zimmermann, M., Lottersberger, F., Buonomo, S.B., Sfeir, A. & de Lange, T. 53BP1 regulates DSB repair using Rif1 to control 5′ end resection. Science 339, 700–704 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Di Virgilio, M. et al. Rif1 prevents resection of DNA breaks and promotes immunoglobulin class switching. Science 339, 711–715 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Chapman, J.R. et al. RIF1 is essential for 53BP1-dependent nonhomologous end joining and suppression of DNA double-strand break resection. Mol. Cell 49, 858–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Escribano-Díaz, C. et al. A cell cycle–dependent regulatory circuit composed of 53BP1–RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49, 872–883 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Nakada, S., Yonamine, R.M. & Matsuo, K. RNF8 regulates assembly of RAD51 at DNA double-strand breaks in the absence of BRCA1 and 53BP1. Cancer Res. 72, 4974–4983 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Pennington, K.P. et al. 53BP1 expression in sporadic and inherited ovarian carcinoma: Relationship to genetic status and clinical outcomes. Gynecol. Oncol. 128, 493–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Choi, Y.H. & Yu, A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. published online, doi:10.2174/13816128113199990005 (13 May 2013).

  40. Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA 105, 17079–17084 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oplustilova, L. et al. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle 11, 3837–3850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murai, J. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Satoh, M.S. & Lindahl, T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. McCabe, N. et al. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of poly(ADP-Ribose) polymerase: an issue of potency. Cancer Biol. Ther. 4, 934–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Pettitt, S.J. et al. A genetic screen using the piggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLoS ONE 8, e61520 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patel, A.G. et al. Enhanced killing of cancer cells by poly(ADP-ribose) polymerase inhibitors and topoisomerase I inhibitors reflects poisoning of both enzymes. J. Biol. Chem. 287, 4198–4210 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, X. et al. Acquired resistance to combination treatment with temozolomide and ABT-888 is mediated by both base excision repair and homologous recombination DNA repair pathways. Mol. Cancer Res. 7, 1686–1692 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Klauke, M.L. et al. Higher cytoplasmic and nuclear poly(ADP-ribose) polymerase expression in familial than in sporadic breast cancer. Virchows Arch. 461, 425–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Gottipati, P. et al. Poly(ADP-ribose) polymerase is hyperactivated in homologous recombination-defective cells. Cancer Res. 70, 5389–5398 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Drost, R. et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 20, 797–809 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Graeser, M. et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 16, 6159–6168 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo, J., Solimini, N.L. & Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tischler, J., Lehner, B. & Fraser, A.G. Evolutionary plasticity of genetic interaction networks. Nat. Genet. 40, 390–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Kumar, M.S. et al. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149, 642–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Brough, R. et al. Functional viability profiles of breast cancer. Cancer Discov. 1, 260–273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK, Breakthrough Breast Cancer, the American Association for Cancer Research as part of the Stand Up to Cancer Breast Cancer Dream Team, The Komen Foundation, The Breast Cancer Research Foundation, The Wellcome Trust and the European Union as part of the FP7 DNA Damage Response (DDR) and EUROCAN programmes for funding our work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher J Lord or Alan Ashworth.

Ethics declarations

Competing interests

C.J.L. and A.A. are named inventors on patents describing the use of PARP inhibitors and stand to gain from their development as part of the Institute of Cancer Research “Rewards to Inventors” scheme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lord, C., Ashworth, A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med 19, 1381–1388 (2013). https://doi.org/10.1038/nm.3369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3369

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing