Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Cell encapsulation: Promise and progress

In cell encapsulation, transplanted cells are protected from immune rejection by an artificial, semipermeable membrane, potentially allowing transplantation (allo- or xenotransplantation) without the need for immunosuppression. Yet, despite some promising results in animal studies, the field has not lived up to expectations, and clinical products based on encapsulated cell technology continue to elude the scientific community. This commentary discusses the reasons for this, summarizes recent progress in the field and outlines what is needed to bring this technology closer to clinical application.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell microencapsulation.

References

  1. Chang, T.M.S. Semipermeable microcapsules. Science 146, 524–525 (1964).

    Article  CAS  Google Scholar 

  2. Lim, F. & Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908–909 (1980).

    Article  CAS  Google Scholar 

  3. Sun, Y.L., Ma, X.J., Zhou, D.B., Vacek, I. & Sun, A.M. Normalization of diabetes in spontaneously diabetic cynomologous monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J. Clin. Invest. 98, 1417–1422 (1996).

    Article  CAS  Google Scholar 

  4. Hortelano, G., Al-Hendy, A., Ofosu, F.A. & Chang, P.L. Delivery of human Factor IX in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia B. Blood 87, 5095–5103 (1996).

    CAS  PubMed  Google Scholar 

  5. Xu, W., Liu, L. & Charles, I.G. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 16, 213–215 (2002).

    Article  CAS  Google Scholar 

  6. Prakash, S. & Chang, T.M.S. Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nature Med. 2, 883–887 (1996).

    Article  CAS  Google Scholar 

  7. Soon-Shiong, P. et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343, 950–951 (1994).

    Article  CAS  Google Scholar 

  8. Hasse, C., Klock, G., Schlosser, A., Zimmermann, U. & Rothmund, M., Parathyroid allotransplantation without immunosuppression. Lancet 351, 1296–1297 (1997).

    Article  Google Scholar 

  9. Lanza, R.P., Hayes, J.L. & Chick, W.L. Encapsulated cell technology. Nature Biotechnol. 14, 1107–1111 (1996).

    Article  CAS  Google Scholar 

  10. Shapiro, A.M.J. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  Google Scholar 

  11. Hunkeler, D. et al. Objectively assessing bioartificial organs. Ann. NY Acad. Sci. 944, 456–471 (2001).

    Article  CAS  Google Scholar 

  12. Anilkumar, A.V., Lacik, I. & Wang, T.G. A novel reactor for making uniform capsules. Biotechnol. Bioeng. 75, 581–589 (2001).

    Article  CAS  Google Scholar 

  13. Strand, B.L. et al. Poly-l-lysine induces fibrosis on alginate microcapsules via the induction of cytokines. Cell Transplant. 10, 263–275 (2001).

    Article  CAS  Google Scholar 

  14. Calafiore, R. et al. Transplantation of minimal volume microcapsules in diabetic high mammalians. Ann. NY Acad. Sci. 875, 219–232 (1999).

    Article  CAS  Google Scholar 

  15. Wang, T. et al. An encapsulation system for the immunoisolation of pancreatic islets. Nature Biotechnol. 15, 358–362 (1997).

    Article  CAS  Google Scholar 

  16. De Vos, P. et al. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 24, 305–312 (2003).

    Article  CAS  Google Scholar 

  17. Murphy, F.A. The public health risk of animal organ and tissue transplantation into humans. Science 273, 746–747 (1996).

    Article  CAS  Google Scholar 

  18. Günzburg, W.H. & Salmons, B. Xenotransplantation: Is the risk of viral infection as great as we thought? Mol. Med. Today 6, 199–208 (2000).

    Article  Google Scholar 

  19. Hunkeler, D. Allo transplants xeno: as bioartificial organs move to the clinic. Ann. NY Acad. Sci. 944, 1–6.

  20. Bach, F.H. & Fineberg, H.V. Call for a moratorium on xenotransplants. Nature 391, 326 (1998).

  21. Aebischer, P., Hottinger, A.F. & Déglon, N. Cellular xenotransplantation. Nature Med. 5, 852 (1999).

  22. Hunkeler, D. et al. Bioartificial organs and acceptable risk. Nature Biotechnol. 17, 1045 (1999).

  23. Calafiore, R. et al. Cellular support systems for alginate microcapsules containing islets as composite bioartificial pancreas. Ann. NY Acad. Sci. 944, 240–251 (2001).

    Article  CAS  Google Scholar 

  24. De Vos, P., Hamel, A.F. & Tatarkiewicz, K. Considerations for successful transplantation of encapsulated pancreatic islets. Diabetologia 45, 159–173 (2002).

    Article  CAS  Google Scholar 

  25. De Vos, P. & Marchetti, P. Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol. Med. 8, 363–366 (2002).

    Article  CAS  Google Scholar 

  26. US Pharmacopeia and National Formulary (Rockville, Maryland). 1046, 2762–2790 (2002).

  27. Check, E. Diabetes trial stirs debate on safety of xenotransplants. Nature 419, 5 (2002).

  28. Mares-Guia, M. & Ricordi, C. Hetero-polysaccharide conjugate and methods of making and using the same. US Patent 6,281,341 (2001).

  29. King, A. et al. Improvement of the biocompatibility of alginate/poly-l-lysine/alginate microcapsules by the use of epimerised alginate as a coating. J. Biomed. Mat. Res. (in press).

  30. Desai, T.A. Microfabrication technology for pancreatic cell encapsulation. Exp. Opin. Biol. Ther. 2, 633–646 (2002).

    Article  CAS  Google Scholar 

  31. Pelegrin, M. et al. Systemic long-term delivery of antibodies in immunocompetent animals using cellulose sulphate capsules containing antibody-producing cells. Gene Ther. 5, 828–834 (1998).

    Article  CAS  Google Scholar 

  32. Löhr, M. et al. Microencapsulated cell-mediated treatment of inoperable pancreatic carcinoma. Lancet 357, 1591–1592 (2001).

    Article  Google Scholar 

  33. Read, T.A. et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nature Biotechnol. 19, 29–34 (2001).

    Article  CAS  Google Scholar 

  34. Joki, T. et al. Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nature Biotechnol. 19, 35–39 (2001).

    Article  CAS  Google Scholar 

  35. Cirone, P., Bourgeois, J.M., Austin, R.C. & Chang, P.L. A novel approach to tumor suppression with microencapsulated recombinant cells. Hum. Gene Ther. 13, 1157–1166 (2002).

    Article  CAS  Google Scholar 

  36. Drukker, M. et al. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 9864–9869 (2002).

    Article  CAS  Google Scholar 

  37. Dove, A. Cell-based therapies go live. Nature Biotechnol. 20, 339–343 (2002).

    Article  CAS  Google Scholar 

  38. Orive, G., Hernández, R.M., Gascón, A.R., Igartua, M. & Pedraz, J.L. Encapsulated cell technology: from research to market. Trends Biotechnol. 20, 382–387 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Pedraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orive, G., Hernández, R., Gascón, A. et al. Cell encapsulation: Promise and progress. Nat Med 9, 104–107 (2003). https://doi.org/10.1038/nm0103-104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0103-104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing